

Journal of

Information Systems

Applied Research

Volume 11, Issue 2
August 2018

ISSN: 1946-1836

In this issue:

4. What’s “Appening” to our Privacy? A Student’s Perspective on Downloading

Mobile Apps

Karen Paullet, Robert Morris University

Adnan A. Chawdhry, California University of Pennsylvania

David M. Douglas, Robert Morris University

Joseph Compimizzi, Florida Atlanta University

13. An Exploratory Analysis of Gender Differences in IT Project Commitment,

Continuation, and Escalation

Melinda L. Korzaan, Middle Tennessee State University

Amy H. Harris, Middle Tennessee State University

Nita G. Brooks, Middle Tennessee State University

24. Information Security and Privacy Legislation: Current State and Future

Direction

Lex Dunlap, University of North Carolina Wilmington

Jeff Cummings, University of North Carolina Wilmington

Thomas Janicki, University of North Carolina Wilmington

33. Protecting IoT Devices from the Mirai Botnet

Charles Frank, Dakota State University

Samuel Jarocki, Dakota State University

Cory Nance, Dakota State University

Wayne E. Pauli, Dakota State University

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 2

http://jisar.org; http://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by ISCAP, Information Systems and Computing Academic
Professionals. Publishing frequency is three issues a year. The first date of publication was
December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target
acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org. Special thanks to members of AITP-EDSIG who perform the editorial and
review processes for JISAR.

2018 AITP Education Special Interest Group (EDSIG) Board of Directors

Leslie J. Waguespack Jr
Bentley University

President

Jeffry Babb
West Texas A&M University

Vice President

Scott Hunsinger
Appalachian State Univ

Past President (2014-2016)

Amjad Abdullat
West Texas A&M University

Director

Meg Fryling
Siena College

Director

Li-Jen Lester
Sam Houston State Univ

Director

Lionel Mew
University of Richmond

Director

Rachida Parks
Quinnipiac University

Director

Anthony Serapiglia
St. Vincent College

Director

Jason Sharp

Tarleton State University
Director

Peter Wu

Robert Morris University
Director

Lee Freeman

Univ. of Michigan - Dearborn
JISE Editor

Copyright © 2018 by the Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

http://jisar.org/
mailto:editor@jisar.org
mailto:publisher@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 3

http://jisar.org; http://iscap.info

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger

Senior Editor
Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

2018 JISAR Editorial Board

Wendy Ceccucci
Quinnipiac University

Ulku Clark
University of North Carolina Wilmington

Jami Colter
Siena College

Christopher Davis
University of South Florida St. Petersburg

Gerald DeHondt II

Meg Fryling
Siena College

Musa Jafar
Manhattan College

James Lawler
Pace University

Lionel Mew
University of Richmond

Fortune Mhlanga
Lipscomb University

Muhammed Miah
Southern University at New Orleans

Rachida Parks
Quinnipiac University

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

James Pomykalski
Susquehanna University

Christopher Taylor
Appalachian State University

Karthikeyan Umapathy
University of North Florida

Leslie Waguespack
Bentley University

Peter Wu
Robert Morris University

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 33

http://jisar.org; http://iscap.info

Protecting IoT Devices from the Mirai Botnet

Charles Frank

charles.frank@trojans.dsu.edu

Samuel Jarocki
 samuel.jarocki@trojans.dsu.edu

Cory Nance

cory.nance@trojans.dsu.edu

Wayne E Pauli

wayne.pauli@dsu.edu

Dakota State University
Madison, SD

Abstract

This paper details the Mirai botnet capabilities to perform massive DDoS attacks and reviews existing

research to detect and prevent Mirai botnets. The Mirai architecture is presented and a code audit is
performed to analyze how the malware is loaded onto a device, joins the botnet, and searches for new
victims. Based upon the code analysis, novel signatures were discovered. A hardening script for IoT

devices was created to prevent the botnet from loading the Mirai malware onto a device. Another script
was on the IoT device to detect and prevent communication to the CNC server. A test environment was
orchestrated consisting of a Mirai CNC, loader, and several simulated IoT devices. The hardening script
was shown to be successful in preventing the initial Mirai malware infection on the IoT device, and the
detection script was successful in recognizing and stopping an already existing infection on the Mirai
bot. The conclusion section suggests future possible research directions.

 Keywords: Mirai, IoT, botnet, DDoS, malware, detection, prevention

1. INTRODUCTION

Currently, there is an estimated 15 billion

Internet of Things (IoT) devices. By 2020, the
estimate is projected to be as high as 50 billion
connected IoT devices (Higginbotham S, 2016).
IoT incorporates the internetworking of physical
devices, smart devices, smart buildings, smart
cars, medical device, etc.; embedded with
electronics, software, sensors, actuators, and

internet connectivity. These objects collect and
exchange data (Internet of Things, n.d.).

The value of IoT comes from the data it generates
and the feedback it provides, such as real-time
data analytics, insights, and improvements

(Gorlich, K., 2016). There exist a myriad of
applications for IoT, ranging from non-critical
applications, such as wearables (e.g. smart
watches), to crucial applications in healthcare
(e.g. IoT smart medical device dispensing
medicine to hospital patients (IoT Applications
with Examples, 2016), military, and battlefield

utilization (Goldstein, P., n.d.). IoT applications
play an integrated role in people’s everyday lives
and clearly there are many IoT devices, and that

http://jisar.org/
mailto:Charles.frank@trojans.dsu.edu
mailto:Samuel.jarocki@trojans.dsu.edu
mailto:Cory.nance@trojans.dsu.edu
mailto:Wayne.pauli@dsu.edu

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 34

http://jisar.org; http://iscap.info

number will grow exponentially over time

(Higginbotham S, 2016). Depending upon the IoT
application, security could be paramount.

2. BOTNET HISTORY

In 1999, Sub7 (Gamblin, J., 2017) and Prettypark
(Hariston K., Rozman, N., et al, n.d.) constructed
an IRC channel to gain control of victim machines
to issue malicious commands. In 2000, Global
Threat Bot (GTBot) was based on the mIRC client

(Fandom, n.d.). GTBot could run custom scripts
in response to IRC events and had access to TCP
and UDP sockets, allowing for Denial of Service
(DoS) attacks. Also, GTBot scanned for Sub7
infected hosts and updated them to GTbots
(Global Threat Bot, 2017).

In 2002 notable evolutions in botnet technology
were observed with SDBot and Agobot. SDBot’s
source code was released to the public via the
author; thus many subsequent bots include code
or ideas from SDBot (Trend Micro,
“Countermeasures..., n.d.). Agobot introduced

the concept of a modular, staged attack, as
payloads were delivered sequentially (Trend
Micro, “SDBOT”, n.d.). The initial attack installed
a back door and used stealth techniques to avoid
detection from antivirus. These early botnets
concentrated on remote control and information
theft (Global Threat Bot, 2017).

More advanced bot functionality began to set the

stage for greater data exfiltration and service
disruption and circumvention techniques. In 2003
Spybot (aka Rbot) included keylogging,
information stealing, spam, and DDoS capabilities

(Argobot, n.d.). The command and control (CNC)
was conducted over IRC. Sinit was the first peer-
to-peer botnet (Dark Reading, n.d.). Polybot
employed polymorphism to avoid detection by
changing its appearance as often as possible
(Global Threat Bot, 2017). Later in 2005, Bagle
and Bobax were the first spamming botnets, and

the malware Mytob was a mailing worm based
upon MyDoom and SDbot (Trendmicro,
WORM_SPYBOT.A, n.d.); enabling large botnets
distributed across many infected PCs. Soon after,

in 2006, another invasive spamming botnet
RuStock (Trendmicro, CounterMeasures Security,
Privacy & Trust, n.d.) appeared, utilizing self-

propagation. Undoubtedly, in a short period of
time, botnets started to become more
sophisticated in attacking, evading detection, and
multiplying.

ZeuS is an information stealing tool that first

appeared in 2010. ZeuS quickly became the most
widely used information stealing botnet. Part of

its appeal is that it includes simple point and click

interfaces for managing infected machines. Zeus
is regularly updated and new versions have been
offered for sale, while older versions have been

distributed online free of charge (Trendmicro,
WORM_SPYBOT.A, n.d.). At this point, not only
have botnets gotten more sophisticated in their
method of infection via email spamming but they
are now concerned with ease of use via point and
click interfaces.

2014 witnessed many high-profile attacks; from
an internet-connected refrigerator participating in
a botnet sending over 750,000 spam emails

(Rapid7, IOT Seeker, n.d.) to a DDoS attack of
IoT devices successfully affecting availability of
Sony and Microsoft's gaming networks

Constantin, L., 2017). In December 2016,
researchers from Imperva detected a colossal
650 Gbps DDoS attack generated by a new IoT
botnet, named Leet (Simonroses.com, n.d.).

In April of 2017, Unit 42 researchers have
identified a new variant of the IoT Linux botnet
Tsunami, coined Amnesia (Jia, Y., Xiao, C., &
Zheng, C., 2017). Amnesia targets an unpatched
remote code execution vulnerability that was

publicly disclosed in March 2016 in DVR (digital
video recorder) devices made by TVT Digital. It
is believed Amnesia is the first Linux malware to
adopt virtual machine evasion techniques to
defeat malware analysis sandboxes. Currently,
Amnesia has not been used to mount large scale

attacks.

Shown in Fig. 1, Wikipedia (Zeus, n.d.) presents
a historical list of botnets, with many of the
botnets described in the previous paragraphs.
Currently, there are thousands of botnets that the
Shadowserver Foundation is tracking (Botnet,
n.d.). Typically, Trend Micro tracks tens of

millions of infected PCs that are being used to
send spam; and that does not include all the other
infected PCs that are being used for information
theft, DDoS or other botnet crimes
(Trendmicro.eu, 2017).

3. MIRAI BOTNET

The Mirai botnet wreaked havoc on the internet in
2016. The botnet takes advantage of unsecured
IoT devices that leave administrative channels
(e.g. telnet/SSH) open and use well known,
factory default, usernames and passwords. Mirai

scans the internet looking for new systems to
infest, such as those manufactured by XiongMai
Technologies that had default passwords set in
their firmware (prior to September 2015) which
cannot be changed unless upgraded. These

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 35

http://jisar.org; http://iscap.info

devices are especially vulnerable to the Mirai

botnet, as well as other exploit payloads due to
their insecure default firmware (Buntinx J.P.,
2016). Mirai’s size makes it a very powerful

botnet capable of producing massive throughput.
For example, in September of 2016, the Mirai
botnet is reported to have generated 620 Gbps in
its DDoS attack on “Kreb’s on Security” (Mirai,
n.d.).

In October 2016, the source code for Mirai was
leaked on HackForums (ShadowServer, n.d.).
This release has helped security researchers to
better understand Mirai capabilities and how it
works. Mirai performs wide-ranging scans of IP

addresses with the intentions of locating IoT
devices that can be remotely accessed via easily

guessable login credentials, usually factory
default usernames and passwords (e.g.,
admin/admin) (ShadowServer, n.d.).

Mirai is using several functions from the Linux

kernel API related to network operations. For
example, in killer.c there is a function named
killer_init that kills several services: telnet (port
23), ssh (port 22) and http (port 80) to prevent
others from accessing the compromised IoT
device. (Femerling, 2016).

Mirai comes with a list of default/weak passwords
to perform brute force attacks on IoT devices
[29]. Mirai’s attack function enables it to launch

HTTP floods and various network (OSI layer 3-4)
DDoS attacks. For network layer assaults, Mirai
is capable of launching GRE IP and GRE ETH

floods, SYN and ACK floods, STOMP (Simple Text
Oriented Message Protocol) floods, DNS floods
and UDP flood attacks (ShadowServer, n.d.).

There is even a “don’t mess with” list for IP
addresses (e.g. the United States Post Office,
Dept. of Defense, and private IP space) and

several killer scripts meant to eradicate other
worms and trojans. Since the Mirai source code
has been leaked, many variants have been
detected. A few interesting variants include: the
use of a DGA (Domain Generation Algorithm)
Incapsula.com, n.d.) and trojanized Windows

payloads that incorporate Mirai scanning

(cfengine.com, n.d.).

To conclude, each bot scans for new bots to infect
using the default list of usernames and
passwords. Once a bot finds a new vulnerable
device it forwards the IP, port, credentials, and

device architecture to the ScanListener.

Figure 2 Mirai Architecture

The ScanListener does the part of actually
infecting the device. Once the IoT device has

been infected with the Mirai malware via telnet
and has become a bot, the CNC will communicate

with the bot to execute DDoS attacks.

4. MIRAI CODE AUDIT

Tintorera calculated that Mirai is a small project

and not too complicated to review (Roses S.,
2016). The ScanListener, Loader, and the
malware executing on the bots are written in the
C programming language. The CNC is written in
the GO language.

Figure 3 shows an example of the default
administrative user id and password list utilized
by bots for the telnet scanning and the CNC’s
ScanListener. The list is comprised of an
obfuscated userid and password combination that

is deobfuscated for attempting to log into the
potential bot victim via telnet.

Three upload methods are utilized for uploading
the Mirai malware onto the IoT device by the CNC
Loader. Figure 4 shows, in sequential order, the
Loader attempts to find: (1) wget (2) tftp (3)
echo. The first utility found on the victim will be
selected to perform the upload of the malware by

the CNC.

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 36

http://jisar.org; http://iscap.info

func main() {

 tel, err := net.Listen("tcp", "0.0.0.0:23")
 if err != nil {
 fmt.Println(err)

 return

 }

Figure 5 CNC Listener

Shown above, the CNC Listens on port 23 for
telnet traffic from bots. The CNC tasks bots for
DDoS attacks.

5. BOTNET DETECTION AND PREVENTION

Recent studies from the INSuRE (Information
Security Research and Education) research group

have focused on IoT botnets (INSuRE, Online). In

Kovacoc and Vargas (n.d.), an analysis of current
botnets and botnet operations, command and
control infrastructure, and detection approaches
were presented. Rudesh (n.d.) determines the
characteristics of Thingbots, identifies IoT devices
that can participate in the botnet and determines
a detection, isolation, and mitigation technique

for Thingbots by reviewing existing techniques.
Another project detected IoT botnets through the
spreading of the hosts which have the botnet
detection tool installed on them. Baki presents
peer-to-peer botnet detection through Machine
Learning (ML) (n.d.) (Abay, C., Hagel, L., &
Williams, K., n.d.) isolates and analyzes a Zeus

botnet node, and (Freeman, L., Hickey, R., etal,

n.d.) develops a testbed for botnet
countermeasures.

There are also efforts to secure IoT devices. One
novel approach is using blockchain technology

where security software on the kernel of the IoT
device could receive a blacklist of IP addresses
over the blockchain. (Faife, C., n.d.). Another
study found a stack buffer overflow vulnerability
in the Mirai malware that allows the malware to
be crashed on the bot (Leyden, J., 2016). Lastly,
an anti-worm "nematode" has been developed

that could help to patch vulnerable devices and to
help prevent Mirai bots (Pauli, D., 2016).

Figure 6 illustrates international research

conducted by a team from Japan and Germany.
The team, led by Yin Minn Pa Pa, and Shogo
Suzuki authored an article on analyzing the rise

of IoT compromises. The increasing threats
against IoT devices show that telnet-based
attacks that target IoT devices have skyrocketed
since 2014 (Pa Pa, Y, Suzuki, S, etal, n.d.). With
analysis from IotPOT, a honeypot for IoT, Fig. 6
indicates that there are at least four distinct DDoS

malware families targeting telnet-enabled IoT

devices.

Many of the patterns have common command

sequences such as checking for the victim’s shell
and then eventually downloading the malicious
binary. Compared to the other patterns, ZORRO
3 contained many more command sequences per
day.

ShadowServer (Botnet, n.d.) suggests the best
way to mitigate botnets is to keep them from
forming. Botnets would not be a threat if they
could not propagate and infect vast numbers of
systems. IoT Seeker (Seals, T., n.d.) scans for
IoT devices which could easily be hijacked by
botnets. Methods of preventing IoT botnets from

spreading are suggested by stopping the use of
default/generic passwords and disabling all
remote (WAN) access to your devices
(ShadowServer, n.d.). CFEngine (Arghire, I.,
n.d.) significantly reduces end-point attack
surface by: (1) closing any unnecessary services,
especially remote access services, (2) changing

factory default user accounts, (3) removing
unnecessary software, and (4) avoiding legacy
protocols and password logins. With the recent
advent of trojanized Windows payloads that
incorporate Mirai scanning and reporting within
an intranet environment (cfengine.com, n.d.), the
security offered by rejecting and blocking publicly

accessible ports/services is diminished.

6. PROPOSED IOT HARDENING SCRIPTS

Two scripts are proposed for hardening IoT
devices from Mirai: (1) antimirai.py and (2)
secure.sh. antimirai.py is a python script that
makes various changes on the IoT device, such
as: (1) changing the default password (2)
creating a busybox wrapper to filter out applets

used by Mirai (3) changing the logon banner and
(4) implementing /etc/host.deny. These changes
attempt to prevent the infection of Mirai on the
IoT device.

Shown in Fig. 7, replace_busybox() will copy the

existing busybox binary, on the IoT device, to

tmp_busybox. Then, a busybox wrapper is
created and the commands that are executed by
the Mirai loader to upload the malware are
detected [words="telnet wget tftp"]. In an
attempt to prevent Mirai infection, these
commands will return a success [0], even though

the commands are prevented from being
executed on the actual IoT device.

Shown in Fig. 8, the change_passwd_telnet()
method will generate a new random password for

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 37

http://jisar.org; http://iscap.info

the administrator of the IoT device. Lastly,

upload_run_script() will upload and run the
secure.sh script. secure.sh is a script that
detects Mirai infections and reacts by stopping the

Mirai malware from running.

Fig. 9 shows secure.sh, a busybox ash (Almquist
shell) script. Once a bot is infected with Mirai, it
opens a connection back to the CNC server on
port 23 and runs 3 processes with the same
randomly generated name. This script works by

checking /proc/net/tcp for a socket that has a
remote connection to port 23 (0x17). It then
locates the PID of the socket. With the socket’s
PID, the script locates the process’s name and
then sends the SIGKILL signal to each process
with the same name, effectively stopping the

infection and any communication with the CNC
server.

In conclusion, antimiarai.py is a python script to
harden the IoT device from Mirai infections. Not
only will antimaria.py make configuration
changes that prevent Mirai infections but it will

also upload secure.sh. The script secure.sh is an
ash script that will continuously check for an
indication of the Mirai malware running. Once
Mirai is found to be running, it is immediately
killed. This combination of scripts should prevent
an IoT device from becoming a part of the Mirai
botnet.

7. TESTING ENVIRONMENT

The testing environment runs in virtual machines
(VMs) on an isolated private network. It consists
of two VMs. One houses the CNC and loader,

while the other represents a vulnerable Linux-
based IoT device. The vulnerable VM is running
Ubuntu 14.04 with busybox, is configured with a
default username and password, and is running
busybox’s telnetd on port 23. For each test, the
loader was manually executed to attempt Mirai
infections against the vulnerable VM.

Figure 10 Testing Server Configuration

As shown above, the Mirai server and the
simulated IoT Device contain private IP
addresses. These private IP addresses isolate the
testing environment from the publically routable

internet. A Vagrant file (http://vagrantup.com)

was used to orchestrate the creation of the VMs
and private network (Nance, C., n.d.).

8. TESTING RESULTS

The hardening script (antimirai.py) was tested to
determine the feasibility and outcome from basic
protection (changing default password),
obfuscation (modifying banner and changing
server port), and redirection (wrapping busybox

applets used for malicious functions). Not all
functionality was incorporated due to platform
and time limitations. Platform limitations such as
telnet and/or ssh services not being compiled
with the tcp wrapper library (libwrap) lack the
host-based access control lists system to

leverage additions to /etc/hosts.allow and
/etc/hosts.deny, thereby rendering that specific
hardening action ineffectual. Inability to
disable/modify the superuser account (e.g. root),
while not hindering device functionality,
constituted a time limitation. Additional
obfuscation techniques would provide

demonstrations of change without furthering a
proof-of-concept.

Execution of antimirai.py hardening script
produced predictable results based on the testing
environment and conditions. Issuing a change of
default password to a random alphanumeric

string is an effectual method for thwarting Mirai’s
scanner, and subsequent infection. Changing

banner (via /etc/motd, /etc/issue, /etc/issue.net)
was not successful in preventing infection. Mirai
inspects login prompt, such as $, :, #, etc.
provided by telnetd/sshd.

Action Expected
Outcome

Actual
 Outcome

change password Not infected Not infected

change

userid Not infected Not infected

change
banner Not infected Infected

change
telnet port Not infected Not infected

busybox wrapper

to prevent Mirai
malware upload Not infected Not infected

detect and
prevent CNC
communication

Infected then
removed

Infected then
removed

Figure 12 antimirai.py test results

There are multiple methods to changing login
prompt based on platform; and available

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 38

http://jisar.org; http://iscap.info

commands and configurations on host, thereby

not feasible for implementation within time
constraints. Modification of default service port
prevented infection, however this method does

not prevent a port scan from discovering new
listening port.

Service detection paired with banner return may
offer additional obfuscation (not tested). On-the-
fly creation and deployment of a busybox wrapper
script to intercept applets Mirai requires to

download it’s binary to a target device (e.g. wget,
telnet, ftp) was successful in preventing infection.

Finally, deployment and execution of the
secure.sh script, barring any other hardening
techniques, successfully terminated repeated

Mirai bot infections on target host. The secure.sh
script was successful in detecting and
subsequently terminating all infection attempts
based on defined parameters of time and service
port detection. Logically, any combination of
multiple hardening techniques deployed to a
viable host would offer increased protection

within their individual limitations to provide a
multi-faceted strategy of defense.

9. CONCLUSION

Mirai is an IoT botnet that has executed massive
DDoS attacks on websites and internet services.

It infects IoT devices via remote access thru
telnet and default administrative ids and

passwords. The CNC loads the malware onto the
bot as well as controls the commands for various
DDoS attacks. The bot responds to the
commands and probes for new IoT devices to join

the Mirai botnet.

Our research focused on detecting and preventing
Mirai infections on the IoT device. Code auditing
was shown to be effective in determining novel
signatures for detecting communication between
the CNC and the bot for loading the Mirai malware

and trying to recruit new bots. Based upon code
auditing, scripts were created and testing shows
that the prevention script was effective at
preventing a Mirai malware infection and the

detection script was successful at detecting and
removing Mirai malware from an infected bot.

Future research should include a more
comprehensive code analysis of Mirai which
encompasses all of the components of Mirai.
Also, research should entail generating more
comprehensive signatures for indicators of
compromise for the IoT device, including network

traffic analysis. Lastly, a more robust and

complex testing environment would provide for

more comprehensive testing and analysis.

10. REFERENCES

Abay, C., Hagel, L., & Williams, K. (n.d.). Peer-

to-Peer Botnet Detection, Retrieved 29-Jan-
2017 from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2
0Study.

Arghire, I., (n.d.) New Mirai Variants Have Built-

in Domain Generation Algorithm, Retrieved
from http://www.securityweek.com/new-
mirai-variants-have-built-domain-
generation-algorithm

Argobot, (n.d.). Wikipedia. Retrieved 07-Feb-

2017 from
https://en.wikipedia.org/wiki/Agobot.

Baki, S., (n.d.). Network Under Control: Optimal

Node Selection for Installing Botnet Detection

Software Retrieved 29-Jan-2017
from https://purr.purdue.edu/projects/insur
efall2016/files/browse?subdir=Projects/Botn
et%20Study.

Botnet, (n.d.). Wikipedia Retrieved 07-Feb-2017

from https://en.wikipedia.org/wiki/Botnet.

Buntinx, J.P., (2016, Oct. 24). XiongMai

Technologies Admits Their Devices Are
Susceptible To Mirai Malware. The Merkle.
Retrieved 30-Jan-2017 from
https://themerkle.com/xiongmai-

technologies-admits-their-devices-are-
susceptible-to-Mirai-malware/.

Buntinx, J.P., (n.d.), Updated Mirai Botnet

Malware Executes 54-hour DDoS Attack
Retrieved 09-April-2017 from
https://themerkle.com/updated-mirai-

botnet-malware-executes-54-hour-DDoS-
attack/.

CFEngine, (n.d.), Industrial Internet of Things –

Systems Hardening, Retrieved from
https://cfengine.com/solutions/industrial-
iot-systems-hardening/

Constantin, L., (n.d.) Windows Trojan hacks into

embedded devices to install Mirai, PCWorld,
09-Feb-2017

DarkReading, (n.d.). The World’s Biggest

Botnets, Retrieved 07-Feb-2017 from

http://jisar.org/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 39

http://jisar.org; http://iscap.info

http://www.darkreading.com/the-worlds-

biggest-botnets-/d/d-id/1129117?

Faife, C., (n.d.). This Bitcoin Botnet is Vying to Be

Future of Secure IoT Retrieved 09-April-2017
from http://www.coindesk.com/this-bitcoin-
botnet-is-vying-to-be-future-of-secure-iot/

Fandom, (n.d.). Virus Information. Prettypark,

Retrieved 06-Feb-2017 from
http://virus.wikia.com/wiki/Prettypark.

Femerling, S.R., (n.d.), “Mirai DDoS Botnet:

Source Code & Binary Analysis,” Retrieved
from
http://www.simonroses.com/2016/10/mirai-
DDoS-botnet-source-code-binary-analysis/

Freeman, R., Hickey, R., Robertson, J., & Yeske,

J., (n.d.).Botnet Study Retrieved 29-Jan-
2017 from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2
0Study.

Gamblin, J., (2017, Jan.07). Mirai-Source-Code.

GitHub. Retrieved 30-Jan-2017 from
https://github.com/jgamblin/Mirai-Source-
Code.

Global Threat Bot (GTBot). (2017, Feb. 8).

Technopedia Retrieved 08-Feb-2017 from
https://www.techopedia.com/definition/59/g

lobal-threat-bot-gtbot.

Goldstein, P., (2016, May). The Internet of Things

for the Battlefield Needs to Be Flexible, Army

Official Says Retrieved 09-APR-2017 from
http://www.fedtechmagazine.com/article/20
16/05/internet-things-battlefield-needs-be-
flexible-army-official-says.

Görlich, K., (2016, Jun. 20). Live Business: The

Importance of the Internet of Things.

Digitalist Magazine

Hariston, J., Rozman, K., Sissom, N., & Wright,

D., (n.d.). Botnet Counterstrike:

Implementation of Botnet Enclave Testbed
Retrieved 29-Jan-2017 from
https://purr.purdue.edu/projects/insurefall2

016/files/browse?subdir=Projects/Botnet%2
0Study.

Hertig, A., (n.d.), Mirai, The Infamous Internet of

Things Army, Can Now Mine Bitcoin Retrieved
10-April-2017 from

http://www.coindesk.com/mirai-infamous-
internet-things-army-can-now-mine-bitcoin/

Higginbotham, S. (2016, Mar. 18). Prediction:

there won't be 50B connected IoT devices by
2020. Structure Connect. Retrieved 28-Jan-
2017 from

http://www.structureconnect.com/prediction
-there-wont-be-50b-connected-iot-devices-
by-2020/.

Imperva Incapsula (n.d.), Breaking Down Mirai:

An IoT DDoS Botnet Analysis, Retrieved 29-
Jan-2017 from

https://www.incapsula.com/blog/malware-
analysis-mirai-DDoS-botnet.html

INSuRE, Information Security Research and

Education. (n.d.). Retrieved 29-Jan-2017
from

https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2
0Study.

IoT Applications with Examples. (2016, Oct, 24).

Internet of Things Wiki. Retrieved 28-Jan-
2017 from

http://internetofthingswiki.com/iot-
applications-examples/541/

Internet of Things. (n.d.). Retrieved 28-Jan-2017

from
https://en.wikipedia.org/wiki/Internet_of_thi
ngs

Jia, Y., Xiao C., & Zheng, C., (April 2017) New

IoT/Linux Malware Targets DVRs, Forms
Botnet. Retrieved April 9, 2017 from
http://researchcenter.paloaltonetworks.com/
2017/04/unit42-new-iotlinux-malware-

targets-dvrs-forms-
botnet/?utm_source=hs_email&utm_mediu
m=email&utm_content=50167168&_hsenc=
p2ANqtz-
9HGnfET3w5_BRVaC_tp_iEiHppZRK2tQPfem
4dhiM3iP-
7N6HvbaHLQBBKeebc_OFkSk_mw_1A7uzGl

XIIUIt8HaASWw&_hsmi=50167168

Kovacoc, T., & Vargas, J., Botnet Study Retrieved

29-Jan-2017 from

https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Bo

Leyden, J., (2016, Oct) Researchers expose Mirai
vulnerabilities that could be used to hack back
against botnet Retrieved 09-April-2017 from
http://www.theregister.co.uk/2016/10/28/m
irai_botnet_hack_back/botnet%20Study.

Mirai. (n.d.). Wikipedia. Retrieved 26-Jan-2017
from https://en.wikipedia.org/wiki/Mirai.

http://jisar.org/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 40

http://jisar.org; http://iscap.info

Nance, C. (n.d.). miai. GitHub Retrieved 10-APR-
2017. from
https://github.com/canance/mirai?files=1

Pa Pa, Y.M., Suzuki, S., Yoshioka, K., Matsumoto,

T., Kasama, T., & Rossow, C., (n.d.) IoTPOT:
analyzing the rise of IoT compromises
Retrieved 26-Feb-2017 from
https://www.usenix.org/system/files/confere
nce/woot15/woot15-paper-pa.pdf

Pauli, D., (2016, Oct). Boffin's anti-worm bot

could silence epic Mirai DDoS attack army
Retrieved 09-April-2017 from
https://www.theregister.co.uk/2016/10/31/t
his_antiworm_patch_bot_could_silence_epic

_mirai_DDoS_attack_army/

Rapid7, (n.d.). IOT Seeker, Retrieved from

https://information.rapid7.com/iotseeker

Roses, S. (2016, Oct). Mirai DDoS Botnet:

Source Code & Binary Analysis. Retrieved 8-

Jan-2018 from
http://www.simonroses.com/2016/10/mirai-
DDoS-botnet-source-code-binary-analysis/

Rudesh, V., (n.d.). Thing bot Analysis and

Detection Retrieved 29-Jan-2017 from
https://purr.purdue.edu/projects/insurefall2

016/files/browse?subdir=Projects/Botnet%2
0Study.

Seals, T., (n.d.). Leet IoT Botnet Bursts on the

Scene with Massive DDoS Attack, Retrieved
from https://www.infosecurity-
magazine.com/news/leet-iot-botnet-bursts-

on-the-scene/

ShadowServer, (n.d.). Retrieved 7-Feb-2017

from https://www.shadowserver.org/wiki/.

Trend Micro, (n.d.). CounterMeasures Security,

Privacy & Trust. The history of the botnet –

Part I Retrieved 06-Feb-2017 from
http://countermeasures.trendmicro.eu/the-
history-of-the-botnet-part-i/.

Trend Micro, (n.d.). CounterMeasures Security,

Privacy & Trust. The history of the botnet –

Part II Retrieved 08-Feb-2017 from
http://countermeasures.trendmicro.eu/the-
history-of-the-botnet-part-ii/.

Trend Micro, (n.d.). SDBOT, Retrieved 06-Feb-

2017 from
http://countermeasures.trendmicro.

.com/vinfo/us/threat-
encyclopedia/malware/sdbot

Trend Micro, (n.d.). WORM_SPYBOT.A Retrieved

07-Feb-2017 from
https://www.trendmicro.com/vinfo/us/threat
-encyclopedia/malware/WORM_SPYBOT.A

Zeus, (n.d.). Wikipedia. Retrieved 07-Feb-2017

from https://en.wikipedia.org/wiki/Zeus.

http://jisar.org/
https://information.rapid7.com/iotseeker
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 41

http://jisar.org; http://iscap.info

APPENDIX

Date created Name
Estimated no. of

bots Aliases

2004 (Early) Bagle 230,000 Beagle, Mitglieder, Lodeight

 Marina Botnet 6,215,000
Damon Briant, BOB.dc, Cotmonger,

Hacktool.Spammer, Kraken

 Torpig 180,000 Sinowal, Anserin

 Storm 160,000 Nuwar, Peacomm, Zhelatin

2006 (around) Rustock 150,000 RKRustok, Costrat

 Donbot 125,000 Buzus, Bachsoy

2007 (around) Cutwail 1,500,000 Pandex, Mutant (related to: Wigon, Pushdo)

2007 Akbot 1,300,000

2007 (March) Srizbi 450,000 Cbeplay, Exchanger

 Lethic 260,000 none

2007 (September) dBot 10,000+ (Europe) dentaoBot, d-net, SDBOT

 Xarvester 10,000 Rlsloup, Pixoliz

2008 (around) Sality 1,000,000 Sector, Kuku

2008 (around) Mariposa 12,000,000

2008 (November) Conficker 10,500,000+ DownUp, DownAndUp, DownAdUp, Kido

2008 (November) Waledac 80,000 Waled, Waledpak

 Maazben 50,000 None

 Onewordsub 40,000

 Gheg 30,000 Tofsee, Mondera

 Nucrypt 20,000 Loosky, Locksky

 Wopla 20,000 Pokier, Slogger, Cryptic

2008 (around) Asprox 15,000 Danmec, Hydraflux

 Spamthru 12,000 Spam-DComServ, Covesmer, Xmiler

2008 (around) Gumblar

2009 (May) BredoLab 30,000,000 Oficla

2009 (Around) Grum 560,000 Tedroo

 Mega-D 509,000 Ozdok

 Kraken 495,000 Kracken

2009 (August) Festi 250,000 Spamnost

2010 (January) LowSec 11,000+ LowSecurity, FreeMoney, Ring0.Tools

2010 (around) TDL4 4,500,000 TDSS, Alureon

 Zeus 3,600,000 (US only) Zbot, PRG, Wsnpoem, Gorhax, Kneber

2010 Kelihos 300,000+ Hlux

2011 or earlier Ramnit 3,000,000

2012 (Around) Chameleon 120,000 None

2016 (August) Mirai (malware) 380,000 None

Figure 1 Wikipedia Historical Timeline of Botnets

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 42

http://jisar.org; http://iscap.info

Figure 3 Scanner Default Admin. Password List

Figure 4 CNC Upload Methods

Pattern
Name

Pattern of Command Sequence

Set of

Command
Sequence
per Day

(Average)

ZORRO 1

1. Check type of victim shell with command "sh"
2. Check error reply of victim by running non-existing command such as

ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing ZORRO.

5. Remove various command and files under /usr/bin/, /bin, var/run/, /dev.
6. Copy /bin/sh to random file name

7. Append series of binaries to random file name of step 6 and make
attacker’s own shell
8. Using attacker’s own shell, download binary . IP Address and port
number of malware download server can be seen in the command.
9. Run binary

ZORRO 2

1. Check type of victim shell with command "sh"

2. Check error reply of victim by running non-existing command such as
ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing ZORRO.

6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make
attacker’s own shell
8. Using attacker’s own shell, download binary . IP Address and port

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 43

http://jisar.org; http://iscap.info

number of malware download server cannot be seen in the command

because it is hard coded in the attacker’s own shell.
9. Run binary

ZORRO 3

1. Check type of victim shell with command "sh"
2. Check error reply of victim by running non-existing command such as
ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing.

174

5. Remove all under /var/run, /dev, /tmp, /var/tmp
6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make
attacker’s own shell
8. Using attacker’s own shell, download binary. IP Address of malware
download server can be seen in the command and port number cannot be

seen in the command
9. Run binary

1,353

Bashlite

1. Check whether shell can be used or not by echoing "gayfgt"

2. Download shell script.
3. Using downloaded shell script, kill previously running malicious process,

download malware binaries of different CPU architectures and block 23/TCP
in order to prevent other infection.
4. Run all downloaded malware binaries.

606

nttpd
1. Check whether shell can be used or not by echoing "welcome"
2. Download binary to /tmp directory.
3. Run Binary.

3.2

KOS

1. Check whether shell can be used or not by echoing "$?K_O_S_T_Y_P_E"
2. List /proc/self/exe
3. Check all running process
4. Download malware binary using tftp to /mnt folder

5. Run Malware
6. Check CPU information

3.5

Figure 6 IoT Pot Patterns of Attack

…

def replace_bosybox(tn):

 tn.read_until(CMD_PROMPT, 1)

 tn.write('echo $(which busybox) > tmp_busybox; cp $(cat tmp_busybox)

$(cat tmp_busybox).' + DATETIME + '\n')

 tn.write('if [! -f "${mybusybox}.bin"]; then cp $(cat tmp_busybox)

$(cat tmp_busybox).bin; fi\n')

 tn.write('echo \'#!/bin/sh\' > tmp_bb\n')

 tn.write('echo \'mybusybox=$(which busybox)\' >> tmp_bb \n')

 tn.write('echo \'BADFLAG=0 \' >> tmp_bb \n')

 tn.write('echo \'string="$*" \' >> tmp_bb \n')

 tn.write('echo \'words="telnet wget tftp" \' >> tmp_bb \n')

 tn.write('echo \'for word in $words; do if ["${string#*$word}" !=

"$string"]; then return 0; else BADFLAG=1; fi; done \' >> tmp_bb \n')

 tn.write('echo \'if [$BADFLAG = 1]; then ${mybusybox}.bin "$@"; fi

\' >> tmp_bb \n')

 tn.write('mv tmp_bb $(cat tmp_busybox); chmod +x $(cat

tmp_busybox)\n')

 print tn.read_until(CMD_PROMPT, 1)

Figure 7 Replace_busybox

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 11(2)

ISSN: 1946-1836 August, 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals Page 44

http://jisar.org; http://iscap.info

...

def change_passwd_telnet(tn):

 p = random_gen()

 tn.write("passwd " + user + "\n")

 tn.read_until("(current) UNIX password: ")

 tn.write(password + "\n")

 tn.read_until("Enter new UNIX password: ")

 tn.write(p + "\n")

 tn.read_until("Retype new UNIX password: ")

 tn.write(p + "\n")

 targetDetails = "%s:%d:%s:%s:%s" % (target, port, proto, user, p,)

 log.info("Changed values: \t%s" % targetDetails)

...

def upload_run_script():

 ...

 with open(file_exec) as f:

 content = f.read()

 _execFile = file_exec.strip('.\\')

 # convert file contents to base64 and split into chunks to send

reliably over telnet

 content_serialized = split_by_length(base64.b64encode(content),

FILE_CHUNK)

 execFile = RUN_LOCATION + DATETIME + "_" + _execFile

 decodedFile = RUN_LOCATION + DATETIME + "_RUN_" + _execFile

 ...

 # write file in FILE_CHUNK sections

 for c in content_serialized:

 tn.write("echo \"" + c + "\" >> " + execFile + " \n")

 tn.read_until(CMD_PROMPT, 3)

 ...

 print tn.read_until(CMD_PROMPT, 3)

 # execute script on device

 tn.write("cd " + RUN_LOCATION + " && /usr/bin/nohup /bin/sh " +

decodedFile + " " + arg_str +

 " >/dev/null 2>&1 &\n")

 print tn.read_until(CMD_PROMPT, 3)

Figure 8 antimmirai.py

PS="/bin/busybox ps"

while true; do

 socket=$(grep /proc/net/tcp -e '[0-9]*: [A-Z0-9]*:[A-Z0-9]\{4\} [A-Z0-

9]\{8\}:0017' | tr -s ' ' | cut -d' ' -f 11)

 if [! -z "$socket"]; then

 master_pid=$(find /proc/ -type l 2>/dev/null | grep /fd/ | xargs ls -la

2>/dev/null | grep $socket | head -1 | tr -s ' ' | cut -f 9 -d ' ' | cut -f 3 -d '/')

 name=$($PS aux | grep $master_pid | head -1 | tr -s ' ' | cut -d ' ' -f 4)

 $PS aux | grep $name | sed \$d | awk '{print $1}' | xargs kill -9 2>/dev/null

 fi

 sleep 2

done

Figure 9 secure.sh

http://jisar.org/

