

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 8, Issue 1
April 2015

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Cyberbullying or Normal Game Play? Impact of age, gender, and experience

on cyberbullying in multi-player online gaming environments: Perceptions

from one gaming forum

Meg Fryling, Siena College

Jami Cotler, Siena College

Jack Rivituso, SUNY Cobleskill

Lauren Mathews, Siena College

Shauna Pratico, Siena College

19. The Silent Treatment in IT Projects: Gender Differences in Inclinations to

Communicate Project Status Information

Melinda Korzaan, Middle Tennessee State University

Nita Brooks, Middle Tennessee State University

31. Building a Better Stockbroker: Managing Big (Financial) Data by

Constructing an Ontology-Based Framework

Logan Westrick, Epic

Jie Du, Grand Valley State University

Greg Wolffe, Grand Valley State University

42. On Adapting a Military Combat Discrete Event Simulation with Big Data and

Geospatial Modeling Toward a Predictive Model Ecosystem for Interpersonal

Violence

Fortune S. Mhlanga, Lipscomb University

E. L. Perry, Faulkner University

Robert Kirchner, USAF, Retired

56. Measuring Algorithm Performance With Java: Patterns of Variation

Kirby McMaster, Moravian College

Samuel Sambasivam, Azusa Pacific University

Stuart Wolthuis, BYU-Hawaii

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing
frequency is currently semiannually. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the JISAR journal.
Currently the target acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2015 AITP Education Special Interest Group (EDSIG) Board of Directors

Scott Hunsinger

Appalachian State Univ
President

Jeffry Babb

West Texas A&M
Vice President

Wendy Ceccucci

Quinnipiac University
President – 2013-2014

Eric Breimer
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Tom Janicki
U North Carolina Wilmington

Director

Muhammed Miah
Southern Univ New Orleans

Director

James Pomykalski
Susquehanna University

Director

Anthony Serapiglia
St. Vincent College

Director

Leslie J. Waguespack Jr
Bentley University

Director

Peter Wu
Robert Morris University

Director

Lee Freeman
Univ. of Michigan - Dearborn

JISE Editor

Copyright © 2015 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor,
editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Gerald DeHondt II

Janet Helwig
Dominican University

James Lawler
Pace University

Muhammed Miah
Southern University at New Orleans

George Nezlek
University of North Carolina Wilmington

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 56

www.aitp-edsig.org - www.jisar.org

Measuring Algorithm Performance

With Java: Patterns of Variation

Kirby McMaster
kmcmaster@weber.edu

Computer Science

Moravian College
Bethlehem, PA 18018, USA

Samuel Sambasivam

ssambasivam@apu.edu
Computer Science

Azusa Pacific University
Azusa, CA 91702, USA

Stuart Wolthuis

stuart.wolthuis@byuh.edu
Computer & Information Sciences

BYU-Hawaii
Laie, HI 96762, USA

Abstract

Textbook coverage of algorithm performance emphasizes patterns of growth in expected and worst
case execution times, relative to the size of the problem. Variability in execution times for a given
problem size is usually ignored. In this research study, our primary focus is on the empirical
distribution of execution times for a given algorithm and problem size. We examine CPU times for Java
implementations of four sorting algorithms: selection sort, insertion sort, bubble sort, and quicksort.

We measure variation in running times for these sorting algorithms. We show how the sort time
distributions change as the problem size increases. With our methodology, we compare the relative
stability of performance for the different sorting algorithms.

Keywords: algorithm, sorting, performance, variation, order-of-growth, Java.

1. INTRODUCTION

The performance of algorithms is addressed at
different levels throughout the computing
curriculum. In introductory programming
courses, informal comparisons of alternative
algorithms are presented without a rigorous

theoretical framework (Lewis and Loftus, 2011;
Liang, 2012).

In Data Structures textbooks (Koffman &
Wolfgang, 2010; Lafore, 2003), the emphasis is
on how to implement algorithms to support data
structures of varying complexity, such as stacks,

priority queues, binary search trees, and

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 57

www.aitp-edsig.org - www.jisar.org

weighted graphs. A casual introduction to "Big-
Oh" notation is included to relate problem size to
execution time for various types of algorithms.

In Analysis of Algorithms textbooks (Cormen,
Leiserson, Rivest, & Stein, 2009), the discussion
of algorithm performance places greater
emphasis on mathematical reasoning. A formal
examination of algorithm efficiency based on
resources required (primarily CPU time) looks at
best case, worst case, and average case

situations.

Most of the discussion centers on worst case
analysis because the mathematical arguments

are simpler. Order-of-growth is defined to ignore
constants and lower order terms, so average

case results are often proportional to the worst
case. Worst case examples provide an upper
bound on the execution time for an algorithm.

Sedgewick & Wayne (2011) present a
mathematical analysis of algorithms, and then
relate their mathematical models to empirical

results obtained from algorithm run times on a
computer. They give several algorithms for
finding three numbers (from a large input file)
that sum to zero. They ran each algorithm once
for each input file, assuming that the only source
of variation was the actual data. However, in our
research we experienced situations where

repeated execution of the same algorithm on the
same data resulted in different execution times.

Some textbooks briefly mention that running
times can vary for different inputs. However,
they include no discussion of the nature of the

distribution of execution times for random
inputs. Variation includes not only dispersion
(how spread out the scores are from a central
value), but also skewness (how unbalanced the
scores are at each end of the distribution).

Variation can be of greater importance than

averages when consistency/dependability of
execution time is a major requirement. This is
true in systems having strict time constraints on

operations, such as manufacturing systems,
real-time control systems, and embedded
systems (Jones, 2009).

Research Plan
The primary objective of this research is to
examine how algorithm execution time
distributions depend on problem size,
randomness of data, and other factors. We limit
our study to sorting algorithms for arrays of

integers. In the next section, we list potential
sources of variation for execution times. We
then describe our experimental design to control
sources of variation beyond algorithm structure

and problem size. Our results and conclusions
are summarized later in the paper.

2. SOURCES OF VARIATION

There are many system features which can
affect algorithm performance. In this research,

we use CPU time as our primary measure of
performance. A layered list of sources of
variation in sort times is outlined below.

1. Computer hardware components: (a) CPU
clock speed, pipelines, number of cores, internal
caches, (b) memory architecture, amount of

RAM, interleaved RAM, external caches.

2. Operating system features: (a) process
scheduling algorithms, multi-tasking, parallel
processing, (b) memory allocation algorithms,
and virtual memory.

3. For Java programs: (a).Java JIT compiler,
(b) Java run-time options, (c) Java run-time

behavior, especially automatic garbage
collection.

4. Application program: (a) choice of algorithm,
and how it is implemented, (b) size of problem,

(c) amount of memory required by the
algorithm, (d) data type and data source.

Our main focus in this paper is on patterns of
variation in execution times due to features in
the application program. We limit our research
to sorting algorithms, including selection sort,
insertion sort, bubble sort, and quicksort. We
examine a range of array sizes, and repeatedly

fill the arrays with random integers.

To minimize algorithm performance effects from
the lower hardware and software layers, we ran
all final results on a single computer. This
computer had an Intel Core2 Duo CPU, Windows
7 operating system, and Version 7 of the Java

compiler and run-time.

Unexpected Variation
In our research environment, we assumed that
algorithm execution times would depend almost
entirely on:
1. the sorting algorithm

2. the size and data type of the array
3. the randomness of the generated data

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 58

www.aitp-edsig.org - www.jisar.org

Surprisingly, this assumption was not supported
by our test data. Unexpected patterns of
variation in performance were encountered
throughout our research study.

For example, early in the exploratory phase of
our study, we performed the selection sort
algorithm 7 times on an array size of 100. For
each sort operation, independent random values
of type int were generated to fill the array. The
execution times in nanoseconds (ns) for the sort

module were:

 113827

 320489

 16328

 15394

 14928

 14928

 14462

A statistical summary of CPU times to sort these
arrays is:

 Minimum = 14462

 Median = 15394

 Maximum = 320489

 Mean = 72908

 Std dev = 115195

Several patterns in this data can be noted:

1. The maximum sort time is more than 20
times larger than the median. This is due to the
presence of outliers (large sort times) in the
sample.

2. The median sort time is only slightly larger
than the minimum.

3. The average sort time is much larger than
the median, suggesting a positively-skewed
distribution.

4. The standard deviation of the sort times is
larger than the mean. This measure of variation

is greatly inflated by outliers.

3. METHODOLOGY

The above example containing outliers was not
atypical in our study. Because of these

unexpected patterns in execution time data, we
developed a methodology for generating and
analyzing performance data that is relatively
immune to outlier effects.

CPU time measurement does not provide an
"exact" performance value for an algorithm.
Karl Pearson theorized that measurements
represent samplings from a probability

distribution of values (Salsburg, 2001). For
example, to answer the question of "how fast is
a sprinter?", his/her running times in 100-meter
dash events over a season provide a partial
answer in the form of a distribution of sample
values.

For a given hardware/software environment,
sorting algorithm, and array size, our
methodology assumes that the distribution of
execution times is a mixture of two components:

(a) normal variation due to randomness of the
data, and (b) other sources of variation that

result in outliers.

Our methodology attempts to extract the normal
variation component from the combined
distribution. This requires being able to detect
possible outliers and remove them from the
sample.

Our sort time data often contained a relatively
large number of outliers. Therefore, we did not
perform statistical tests to detect individual
outliers. Instead, we used two general
approaches for removing outliers:

1. Set limits on the perceived "normal" data,

and trim off values outside these limits. In
particular, we examine trimmed means and
trimmed standard deviations.

2. Use statistics such as the median that are
less susceptible to outliers.

Our performance analysis approach was
developed first for the selection sort algorithm.
Samples of execution times for selection sort
were obtained for a range of array sizes starting
with 100.

Our Java data generation program, initially

written for selection sort, performs the following
steps:

1. Input the array size (N) and number of
algorithm repetitions (R).

2. For each repetition:
 a. fill the data array with random integers.
 b. sort the array, and place the execution

 time (collected using the Java System
 nanoTime function) in a SortTime array.

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 59

www.aitp-edsig.org - www.jisar.org

3. After all repetitions are completed, sort the
execution times in the SortTime array.

4. Calculate various statistical summaries of
the execution times. This part of the Java

program was modified frequently throughout the
study.

As data were collected for the sorting algorithm,
we evaluated how well different statistics
summarized essential features of the sort time
distributions. When the methodology began to

provide consistent results for selection sort, we
applied the methodology to the remaining
sorting algorithms.

Sample Case
The following sample case demonstrates much

of the process in developing our methodology.
In this case, the array size is 100, and the
number of repetitions is 1000. A frequency
distribution of the 1000 sort times obtained from
running our Java program once is shown below.

Table 1: Selection Sort Distribution.

Sort Time in nanoseconds (ns)
Size N = 100, Repetitions R = 1000

SortTime Freq CumFreq Diff

14461 36 36 ---

14462 68 104 1

14928 472 576 466

14929 78 654 1

15394 124 778 465

15395 194 972 1

15861 17 989 466

15862 4 993 1

16328 1 994 466

17261 1 995 933

19127 1 996 1866

37320 1 997 18193

108695 1 998 71375

111028 1 999 2333

113827 1 1000 2799

Several unusual features appear in the above
distribution:

1. The sample of sort times contains many

repeat values. Only 15 distinct values appear in
the 1000 repetitions of the sorting algorithm.

2. Among the smaller sort times, most appear
in "pairs", differing only by 1 nanosecond. This is
probably due to rounding, since the nanoTime
function returns an integer.

3. If we consider pairs differing by 1 as a single
value, over 99% of the distribution is
concentrated in 4 sort time pairs.

4. Again considering pairs differing by 1 as a

single value, the difference between consecutive
pairs is between 466 and 467. We can interpret
this difference as the resolution of the "clock
tick" for our nanoTime clock. Oracle's Java
documentation (Oracle, 2014) states that the
System.nanoTime method "returns the current
value of the most precise available system

timer, in nanoseconds." Apparently, our
recorded sort times are not accurate to 1
nanosecond. In tests on other computers, we

observed that the clock increment is hardware
specific.

5. The three largest values--113827, 111028,

and 108695--are clearly outliers. But are there
other outliers? The distribution is slightly
skewed, even without top three values.

6. The median of the distribution is 14928,
which is close to the minimum value.

We now ask the most important question for our

methodology. "What characteristics of the sort
time distribution are relevant for describing
patterns of variation?" We will be generating
sort time distributions for different sorting
algorithms and various array sizes. The patterns

of variation we are trying to explain should be
observable within each of these separate

distributions.

A related research question is: "What statistical
measures best summarize the variation in sort
time distributions, without being distorted by
outliers?" Three characteristics of distributions

are of particular interest:

1. central tendency: Where is the "center" of
the distribution? Outliers can distort the mean of
the distribution, but not the median.

2. dispersion: How widely spread are the
values from the central value? For "normal"
variation, dispersion should not be inflated by

outliers.

3. skewness: How "unbalanced" is the
distribution on both sides of the central value?
Skewness can be exaggerated by outliers.

Central Tendency and Skewness
Given a sorting algorithm and an array size, we

want to estimate the center of the distribution of
"normal" sort times. This distribution does not

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 60

www.aitp-edsig.org - www.jisar.org

include outliers. Our main statistic is the
trimmed mean.

We must decide which scores to "trim" from the

sample of sort times. We want to trim enough
values so that the trimmed mean approaches
the median and is not influenced by extreme
values.

In Table 2, we present several trimmed mean
candidates and compare them to the median.

The data is from the sample of sort times
described in Table 1. The untrimmed mean is
based on the entire sample, including outliers.
The 99/01 trimmed mean removes the largest

and smallest 1% (approximately) of the sample
before calculating the mean. Other trimmed

means remove the top and bottom 5%, 10%,
and 20% of the sample. The median can be
interpreted as the mean obtained by removing
the largest and smallest 50%, but leaving the
middle score(s).

Table 2: Selection Sort Trimmed Means.

Size N = 100, Repetitions R = 1000

Trim Percent Mean vs. Median

Untrimmed 15367 439

99/01 15048 120

95/05 15053 125

90/10 15053 125

80/20 15099 171

50/50 (Median) 14928 -0-

Note that the median remains unchanged for all
trimmed samples because we removed the same

number of values from both ends of the sorted
list of values. For this sample of data, removing
the top and bottom 1% seems to be sufficient to
remove the effect of outliers on the mean.

Dispersion
The main topic of interest in this research is

patterns of variation in algorithm performance.
The dispersion in the distribution of sample sort
times provides a measure for performance

variation. We want to determine the variation for
the "normal" sort times, apart from outlier
effects.

The most common measure of variation for
quantitative variables is the standard deviation.
However, the standard deviation is very
sensitive to outliers.

As with trimmed means, we calculate standard
deviations from trimmed samples, hopefully with
outliers removed. Since we are not testing for
individual outliers, we trim different percentages

of larger and smaller values from the sample.

Standard deviations, both untrimmed and
trimmed, are presented in Table 3. The sample
data is again from Table 1.

Table 3: Trimmed Standard Deviations.

Size N = 100, Repetitions R = 1000

Trim Percent Std Devn

Untrimmed 5318

99/01 311

95/05 273

90/10 273

80/20 225

Quartile Deviation 233

It is apparent that trimming the top 1%
(containing the outliers) and bottom 1% leads to

a substantial reduction in the standard deviation.
Additional trimming has relatively little effect on
the standard deviation in this case.

The quartile deviation is included in Table 3 for
comparison purposes. The interquartile range
(IQR) is a well-known measure of the spread of

scores in a distribution. It is defined to be

difference between the third quartile Q3 (75th
centile) and the first quartile Q1 (25th centile).
The quartile deviation is half the interquartile
range (IRQ/2).

Higher Repetitions
The data from Table 1 represents a sample of
1000 sort times. In the early development of our
methodology, we generated samples of this size
for array sizes between 100 and 1000. We
performed statistical analyses on data for these
sample sizes.

As we became more comfortable with our
methodology, we increased the number of

repetitions to 10000. Each time we ran our Java
data generation program, we obtained a sorted
array containing 10000 execution times. With
larger samples, we got a clearer picture of the

stability of our results.

In Table 4, we present a frequency distribution
for one sample of 10000 sort times, based on
selection sort of arrays of size 100. This

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org - www.jisar.org

distribution of 10000 values is similar to the
previous distribution of 1000 values.

Table 4: Selection Sort Distribution.
Size N = 100, Repetitions R = 10000

SortTime Freq CumFreq Diff

* 13995 58 58 ---

* 14461 2295 2353 466

* 14928 5669 8222 467

* 15394 1655 9877 466

* 15861 84 9961 467

other 38 9999 ---

1866018 1 10000 ---

* Consecutive values combined

(e.g. 13995 -- 55, 13996 -- 3)

1. The sample of sort times contains thousands
of repeat values.

2. The smaller sort times appear in "pairs" that

differ by 1 nanosecond (shown with asterisks).
The lowest five pairs comprise over 99% of the
distribution. Perhaps we need a better "clock"
than the one provided by Java's nanoTime
method.

3. The minimum value of 13995 is one clock
tick below 14461, which was the minimum value

in the smaller sample. The maximum value of
1866018 is an order of magnitude larger than

the earlier maximum of 113827. In our
methodology, generating random data that
include large sort times is not unusual.

4. The median of this second distribution

remains at 14928, which is again close to the
minimum value.

4. ANALYSIS OF DATA

In this section, we analyze performance
variation for four sorting algorithms: selection

sort, insertion sort, bubble sort, and quicksort.
For each algorithm, we examine six array sizes:
200, 400, ... , 1200. Patterns of mean variation
across array sizes for a given algorithm is

comparable to order-of-growth models covered
in algorithm textbooks.

We extend our research to describe sort time
distributions within each algorithm/array size
combination. We measured central tendency,
dispersion, and skewness for these distributions.
Each test case involved 10000 repetitions of one
sorting algorithm for a single array size.

Sort Time Central Tendency
We measured central tendency with trimmed
means and the median. Our early work with
arrays of size 100 suggested that trimming the

top and bottom 1% is sufficient to remove
outliers. However, for larger array sizes, the
amount of variation increases. We made a
conservative decision to trim the top and bottom
5% of the scores from each distribution.

Trimmed means for all six array sizes for each

sorting algorithm are listed in Table 5. All times
are in nanoseconds.

Table 5: Sort Time Distribution -

Trimmed 95/05 Mean

Size Select Insert Bubble Quick

200 49979 21306 86374 14991

400 177308 79163 313611 32643

600 378867 173847 677236 51110

800 654887 304813 1118399 70304

1000 1004657 471508 1698413 89862

1200 1427205 674708 2415186 109896

Looking at each row separately, we see that the
largest mean execution times are for bubble
sort, followed by selection sort. Insertion sort
are less than half the values for selection sort.
Quicksort times are much smaller, especially for
large array sizes.

This computer generated data is consistent with
the nature of each of these sorting algorithms.
For random data, bubble sort performs a large
number of comparisons and swaps, while
insertion sort performs many comparisons and
shifts. In selection sort, the number of

comparison operations is almost constant,
regardless of the values in the array. The
insertion sort and bubble sort algorithms can
terminate early, depending on how fully sorted
the data are initially. Quicksort is fastest
because of its recursive design.

If we look down each column at the pattern of
increasing mean execution times, the results

follow traditional order-of-growth models. For
selection sort, when the array size doubles (e.g.
400 -> 800), the mean sort time is
approximately four times larger (177308 ->

654887). This supports an O(N
2
) order-of-

growth model. A similar pattern occurs for
insertion sort and bubble sort. Quicksort displays
a noticeably smaller growth rate.

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org - www.jisar.org

We prepared a summary table containing
untrimmed means, but do not include it in this
paper. With sample sizes of 10000, removing
the top and bottom 5% (presumably containing

outliers) had relatively little effect on the means.
The trimmed means are about 1% to 2%
smaller than the untrimmed means. Correlations
between trimmed and untrimmed means is
above 0.999 for each algorithm. As we shall see,
trimming has a much greater effect on measures
of dispersion.

We provide in Table 6 the medians for the sort
time distributions for each algorithm/array size
combination.

Table 6: Sort Time Distribution -

Median

Size Select Insert Bubble Quick

200 49916 21459 86302 14928

400 177271 79305 313487 32655

600 378801 173539 677355 51314

800 654500 304627 1117730 70441

1000 1004374 471169 1698052 90034

1200 1426570 674566 2414594 110093

When the medians are compared to the trimmed
means, there are minor differences, but the
pattern is almost identical. This suggests that
the trimming has successfully removed outliers,

and the trimmed distributions are less skewed.

Sort Time Dispersion
We remind the reader that the values in the
tables are not absolute. They are the results of
random sampling of an algorithm. With means,
the results are relatively stable, even in the

presence of a small number of outliers.

The same claim cannot be made for measures of
dispersion. Statistics such as the standard
deviation and the range can be greatly distorted
when even a few outliers are in the sample. Our

main objective in this study is to characterize
variation in sort time distributions. With
judicious trimming, we can avoid the problem of

having an unreasonable number of outliers.
Even so, occasional bizarre values appeared in
our data sets.

The most common measure of dispersion for a
distribution is the standard deviation. To
illustrate how volatile standard deviations can be
with outliers, in Table 7 we present untrimmed
standard deviations using complete samples of
10000 sort times.

In this table, untrimmed standard deviations for
selection sort range in value from 6182 to
201238. Observe that increasing the array size
does not always result in a larger standard

deviation. The size of each standard deviation is
heavily influenced by outliers. Similar irregular
patterns occur for each sorting algorithm.

Table 7: Sort Time Distribution -

Untrimmed Standard Deviation

Size Select Insert Bubble Quick

200 6182 10747 30301 2088

400 74580 39323 55776 3226

600 62073 34151 37991 20779

800 201238 104351 68866 36104

1000 57680 73650 43354 52899

1200 188333 32091 64344 24352

In the next table, we show how volatile variation
statistics can be "tamed" with the careful use of
trimming. Table 8 lists trimmed standard
deviations obtained by removing the 5% largest

and 5% smallest values from the sample. We
chose 5% limits to be consistent with the
previous trimming of means. In practice, 5%
trimming might not always be enough.

Table 8: Sort Time Distribution -

Trimmed 95/05 Standard Deviation

Size Select Insert Bubble Quick

200 558 761 1118 326

400 1243 2127 2838 494

600 1496 3782 3976 632

800 1712 6091 5559 794

1000 2141 8421 7520 955

1200 2852 10123 10096 1155

For the trimmed standard deviations in Table 8,
the pattern in each column shows an increase in
dispersion as the array size increases. These
results are representative of what we usually
obtained with 5% trimming.

The variation patterns for the four sorting

algorithms is instructive. The greatest rates of
increase in dispersion are for insertion sort and
bubble sort. The smallest rate of increase is for
quicksort.

Selection sort, as we showed in Table 5, has the
second largest mean sort times. But the rate of
increase in dispersion is less than for insertion
and bubble sort. Why? We let the reader answer
that question. Quicksort has a lower rate of
increase in dispersion than selection sort.

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org - www.jisar.org

Figure 1: Sort Time Relative Variation -

95/05 Coefficient of Variation (%)

Coefficient of Variation
Another way of comparing dispersion among
similar distributions is by measuring relative

variation. In this case, we divide the trimmed
standard deviation by the corresponding
trimmed mean. The statistic is called the
coefficient of variation. To make the value of the
statistic easier to interpret, we multiplied it by
100, so that we express the standard deviation
as a percentage of the mean.

Measures of relative variation for our sorting

algorithms and array sizes are displayed in
Figure 1. Both means and standard deviations
are trimmed at the top and bottom 5% levels.

Selection sort has the smallest values for the
coefficient of variation, followed closely by
bubble sort. The selection sort means are more
than twice as large as the times for insertion
sort, but selection sort standard deviations are
smaller. The result is less relative variation for

selection sort.

Quicksort has smaller standard deviations and
smaller means. The ratios fall in between the
high and low values of the other algorithms. One
interesting feature revealed by Figure 1 is that,

for all four algorithms, the coefficient of
variation decreases as the array size increases.
Although the standard deviation increases for
larger arrays, the mean increases at a faster
rate.

It is tempting to conjecture that the ratios

approach a lower limit for very large arrays.
That is a question for future research.

In any case, the fact that the relative variation is
small for large arrays might justify the emphasis
on mean execution times in textbooks. Sort time
variation could be viewed as less important for

large arrays.

Sort Time Skewness
Throughout our research, we used the difference
between the mean and median as a crude
measure of skewness. One criteria for choosing
a trim level for the sort time distributions was

based on this difference being small. A
comparison of the 95/05 trimmed means in
Table 5 with the medians in Table 6 shows the
closeness of each mean to the corresponding

median. This indicates that the skewness in the
trimmed distributions is relatively minor.

Our decision for the recommended amount of
trimming was guided more by its effect on the
standard deviation. Trimming the top and
bottom 1% would be satisfactory to remove the
skewness effects due to outliers. However,
standard deviations are more affected by

outliers, so we chose to trim 5% from the top
and bottom of samples. This often led to a ten-
fold reduction in the sample standard deviation.

Unexplained Variation
In our research design, we generated separate
execution time distributions for specific sorting

algorithm and array size combinations. The
variation within these distributions was assumed
to consist of a "normal" component and outliers.

We assumed that the normal component of
variation would be due primarily to the

randomness of the data. Measurement of this
source of variation was not very accurate
because of the granularity of the Java nanoTime
clock. A clock increment of 466.5 nanoseconds is
almost half of a microsecond. With the speed of
the processor (GHZ), much of the effect of
random data on algorithm performance is hidden

within these 0.466 microsecond intervals.

The most puzzling aspect of our performance

measurement was the frequent appearance of
outliers. Outliers can have multiple causes. In
our study, the "chief suspect" is the Java
runtime environment. This software performs

various actions to improve the performance of a
running program. The feature most relevant
seems to be Java's automatic garbage collection
(Boyer, 2008; Wicht, 2011).

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

200 400 600 800 1000 1200

Array Size

C
o

e
ff

ic
ie

n
t

o
f

V
a

ri
a

ti
o

n

Select Insert Bubble Quick

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org - www.jisar.org

At various points during the execution of a
program, the Java runtime chooses to free
memory that is currently unreferenced.
Generally, this is considered a good thing.

However, automatic garbage collection makes it
difficult to benchmark program performance.

The simple solution for running benchmark
programs with Java would be to turn off Java's
garbage collection feature. That is not an option.
Our solution is to remove outliers from our

sample. Garbage collection takes varying
amounts of time. In our samples, the largest
times were often 10 to 100 times larger than
normal sample values.

5. SUMMARY AND CONCLUSIONS

The primary purpose of this study was to
analyze variation in the performance of sorting
algorithms written in Java. Most of the emphasis
in algorithm textbooks is on average and worst
case performance. We are more interested in
the distribution of execution times when an

algorithm is run multiple times.

We designed a methodology to control
hardware, operating system, and Java runtime
effects. We wanted processing time variation to
result primarily from the sorting algorithm

selected, the size of the array, and the

randomness of the data. We wrote a Java test
program to repeatedly fill an array, sort it, and
record and save the execution times. The
execution time data was then used to calculate
statistics that summarize the distribution in
terms of central tendency, dispersion, and

skewness.

Our experiment was performed for four sorting
algorithms: selection sort, insertion sort, bubble
sort, and quicksort. For each algorithm, a range
of array sizes were examined. A number of
results were reported, including the following:

1. Execution time distributions were discrete,
with relatively few distinct values. This was

primarily due to the limited resolution of the
Java nanoTime function.

2. Distributions were positively skewed and
included a few very large outliers. As a result,
samples had to be trimmed to remove outliers

before calculating statistics.

3. For all sorting algorithms, the mean sort
time increased as the array size increased. This
was expected. The differing observed rates of

increase were consistent with well-known order-
of-growth models for the algorithms.

4. For each sorting algorithm, the standard
deviation of execution times increased with

array size. The algorithms differed in the amount
variation and the pattern of growth. These
patterns can be explained in terms of the
structure of each algorithm.

5. For each algorithm, the standard deviation
grew at a slower rate than the mean. This was
demonstrated by a decreasing coefficient of

variation as the array size grew larger.

Three conclusions can be drawn from our

results. First, sort time variation exists and may
be an important factor in systems with real-time
constraints. Second, sort time variation is less

important for very large arrays because the
amount of variation is small compared to the
mean. Third, beware of outliers in the data,
especially when using the Java runtime
environment for benchmarks.

Future Research

A good research study generates more questions
than it answers. That was true in this study. Our
planned future research activities include:

1. Extend our analysis of variation to other
sorting algorithms, such as merge sort and shell

sort.

2. Use our methodology on algorithms written

in other programming languages. An obvious
next language is C++. One problem is that C++
provides different timer functions in different
operating environments.

3. Study the behavior of Java's nanoTime
function in different hardware and software

environments. The statement by Oracle that
nanoTime provides the "most precise available
system timer" is intriguing and suggests a
number of practical questions for further
research.

6. REFERENCES

Boyer, Brent (2008). Robust Java benchmarking,
Part 1: Issues. IBM DeveloperWorks.

Cormen, Thomas H., Leiserson, Charles E.,
Rivest, Ronald L., & Stein, Clifford (2009).
Introduction to Algorithms (3rd ed). MIT
Press.

Jones, Nigel (2009). Sorting (in) embedded

systems. Stack Overflow.

Journal of Information Systems Applied Research (JISAR) 8(1)
ISSN: 1946-1836 April 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org - www.jisar.org

Koffman, Elliot, & Wolfgang, Paul (2010). Data
Structures: Abstraction and Design Using
Java (2nd ed). Wiley.

Lafore, Robert (2003). Data Structures and

Algorithms in Java (2nd ed). Sams
Publishing.

Lewis, John, & Loftus, William (2011). Java
Software Solutions, Foundations of Program
Design (7th ed). Addison-Wesley.

Liang, Y. Daniel (2012). Introduction to Java
Programming (9th ed). Prentice Hall.

Oracle (2014). java.lang Class System.
www.docs.oracle.com

Salsburg, David (2001). The Lady Tasting Tea.
W. H. Freeman.

Sedgewick, Robert, & Wayne, Kevin (2011).
Algorithms (4th ed). Addison-Wesley.

Wicht, Baptiste (2011). Java Micro-
Benchmarking: How to write correct
benchmarks. www.javacodegeeks.com

