

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 7, Issue 2
May 2014

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Taxonomy of Common Software Testing Terminology: Framework for Key

Software Engineering Testing Concepts

Robert F. Roggio, University of North Florida

Jamie S. Gordon, University of North Florida

James R. Comer, Texas Christian University

13. Microsoft vs Apple: Which is Great by Choice?

James A. Sena, California Polytechnic State University

Eric Olsen, California Polytechnic State University

29. Information Security in Nonprofits: A First Glance at the State of Security in

Two Illinois Regions

Thomas R. Imboden, Southern Illinois University

Jeremy N. Phillips, West Chester University

J. Drew Seib, Murray State University

Susan R. Florentino, West Chester University

39. A Comparison of Software Testing Using the Object-Oriented Paradigm and

Traditional Testing

Jamie S. Gordon, University of North Florida

Robert F. Roggio. University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency
is currently quarterly. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target
acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2014 AITP Education Special Interest Group (EDSIG) Board of Directors

Wendy Ceccucci

Quinnipiac University

President – 2013-2014

Scott Hunsinger

Appalachian State Univ

Vice President

Alan Peslak

Penn State University

President 2011-2012

Jeffry Babb
West Texas A&M

Membership Director

Michael Smith
Georgia Institute of Technology

Secretary

George Nezlek
Univ of North Carolina
Wilmington -Treasurer

Eric Bremier
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Muhammed Miah
Southern Univ New Orleans

Director

Leslie J. Waguespack Jr
Bentley University

Director

Peter Wu
Robert Morris University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams
State of Illinois (retired)

FITE Liaison

Copyright © 2014 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Gerald DeHondt II

Janet Helwig
Dominican University

James Lawler
Pace University

Muhammed Miah
Southern University at New Orleans

George Nezlek
University of North Carolina Wilmington

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 39

www.aitp-edsig.org - www.jisar.org

A Comparison of Software Testing Using the

Object-Oriented Paradigm and Traditional Testing

Jamie S. Gordon
jamie.s.gordon@unf.edu

Robert F. Roggio
broggio@unf.edu

School of Computing, University of North Florida

Jacksonville, FL 32224 United States

Abstract

Software testing is an important part of any software development. With the emphasis on developing
systems using modern object oriented technologies, a critically-sensitive issue arises in the area of
testing. While traditional testing is reasonably well understood, object oriented testing presents a host
of new challenges. This paper focuses on what differentiates the two in test cases, testing levels, and

OO features affecting testing.

Keywords: Object-oriented testing, traditional testing, testing levels

1. INTRODUCTION

Object-oriented testing is based not only on both
the input and output of an object’s methods, but
also how that input and output may influence the
object’s state. Many of the positive features
touted by object-oriented languages can map
directly into increases in testing complexity.

While the many beneficial features of the object-
oriented paradigm are important, the increases in
program complexity (sometimes in unintended
and unseen ways) often negatively impacts

testing in terms of effort and time.

Traditional testing involves the viewing of input

and output of a program in a procedural manner.
Both types of testing still involve tried and true
testing types. In fact, many of the differences
show up in white-box testing because the two
types of programming can often solve the same
problems using the same input and output.

This paper seeks to determine how testing is
different in an object-oriented paradigm versus

that of a traditional (procedural) program.

2. LITERATURE REVIEW

Research done on object oriented testing has
changed over the years. Many early papers

written on the subject lamented the inability of
researchers to address the differences between
object-oriented programs and procedural testing.
As Turner and Robson pointed out, “the vast

majority of research conducted into the testing of
object-oriented programs fails to address the
difference between the object-oriented and more

traditional programming techniques,” (Turner &
Robson, 1993).

At around that same time, Hayes wrote a paper
identifying some aspects of object-oriented
programs and how that may affect systems
(Hayes, 1994). The paper also described a

testing methodology that the author believed

file:///C:/Users/hunsingerds/AppData/Desktop/AppData/Local/Temp/Temp1_RE%253a_paper.__Version_2.zip/A%20Comparison%20Pt.%206.18.doc
file:///C:/Users/hunsingerds/AppData/Desktop/AppData/Local/Temp/Temp1_RE%253a_paper.__Version_2.zip/A%20Comparison%20Pt.%206.18.doc
mailto:broggio@unf.edu
mailto:broggio@unf.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 40

www.aitp-edsig.org - www.jisar.org

should be recommended for OO-programs.
Hayes was successful at identifying the problems
involved with inheritance, but did not discuss
many other issues in much depth, such as

polymorphism and dynamic binding. This was a
problem with many early papers on the subject,
which primarily focused on objects’ states and
inheritance. It became increasingly evident that
many more features of object-oriented
programming need to be considered for testing by
looking at more recent papers, such as that of

Jain, “Testing Polymorphism in Object-Oriented
Programming,” which described how advanced
polymorphism makes it difficult to understand all
the possible interactions among classes (Jain,

2008).

Gu, et al., wrote a paper detailing three processes
to select test data and for evaluating the coverage
of those tests. They were the flow-graph-based
approach, graph-based class testing, and the
ASTOOT approach, which used algebraic
specification to determine test cases. These
methods derive test data, for example the flow-

graph-based process uses the flow of control from
method to method to model test data while the
graph-based process models transitions between
different states of an object. These focused on
program flow and state changes and ignored
other features of OO as well. The authors also

discussed how the testing of object-oriented

programs must differ from traditional testing
methods (Gu, et al., 1994).

By 1996, there was already enough literature for
Johnson to report on the different testing levels
and techniques proposed by researchers

(Johnson, 1996). However, there was not much
of a consensus at that point for a standardized
system of testing. For example, there was a
disagreement on unit-testing, in that some
authors disagree that it should be involved in
object-oriented testing at all.

As time went on, the differences between object-

oriented and traditional (procedural) testing
became more evident. For example Khatri, et al.,
described many features – encapsulation,
inheritance, polymorphism, etc. – of object-
oriented programming and how they made it
more difficult to decide how test should be done

(see Object-Oriented Features that Affect Testing
below) (Khatri, et al., 2011). However, that
paper did not describe in detail how testing should
be done. Bhadauria described the same features,
but also gave a sequence of testing levels and
what kinds of tests should be run in each

(Bhadauria, 2011). Some authors described
design metrics that may help programmers
determine beforehand how difficult to test their
design may be (Badri, 2012). This sort of

empirical view of object-oriented testing is
another useful area of study. Authors have
discussed both new and older metrics for
measuring testability, and which are the most
valuable to object-oriented programming
(Yeresime, et al., 2012).

3. BACKGROUND: OBJECTIVES OF

TRADITIONAL AND OBJECT-ORIENTED
TESTING

There are many people with vested interests in
the testing process, including programmers,
testers, program managers, and end-users.
These people are some of the stakeholders in the

system, those that are impacted by the system or
influenced by its behavior. Individuals or groups
of individuals acting in these roles are those who
depend on testing to show the systems performs
as intended. The major objective in testing is to
discover as many faults, errors, and defects as

possible with minimum effort and cost (Khatri,
Chillar, and Sangwan, 2012). According to
Johnson (Johnson, 1996), “Testing is the process
of executing a program with the intent to yield

measurable errors.” Testing is not about showing
that there are no errors – effective testing comes
from creating effective test cases that can coerce

out errors and failures (Naik & Tripathy, 2013).
This can help designers find 'defects' (term
attributed to design) and programmers find
'faults' (term normally attributed to
programming). Given this backdrop, however,
what constitutes an effective test is quite different
when contrasting traditional (procedural) testing

and object-oriented testing (Dechang, Zhong, &
Ali, 1994)

4. TEST ADEQUACY AXIOMS

Elaine Weyuker defined eleven axioms to

determine the adequacy of a test set (Hayes,
1994). Some are less interesting as they apply
equally to both testing paradigms, such as the
applicability axiom (Every program has an
adequate test set), the monotonicity axiom (It is
possible to create a set of test cases that is larger
than is necessary), the renaming axiom (If P is

simply a renaming of Q, and T is adequate for Q,
then T is adequate for P), or the non-exhaustive
applicability (Program P is adequately tested by
T, where T is a non-exhaustive test set). Below

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 41

www.aitp-edsig.org - www.jisar.org

is a list of the axioms to consider when discussing
the difference between traditional and object-
oriented testing. (Table 1)

Axiom Description Traditional Object-Oriented

Complexity For all n, there is a
program that is
adequately tested by a
test set of size n, but
not by a test set of size
n-1

There is a minimum
set of inputs that
must be tested

There is a minimum set of
inputs and object states that
must be tested

Anti-
extensionality

There are programs P
and Q that compute the

same functions
(semantically similar),
where T is adequate for
P but not for Q

It cannot be assumed
that the same test

cases can be used for
different programs
that accomplish the
same things

It cannot be assumed that
the same test cases can be

used for functionally similar
programs, this can be
extended to mean that just
because one state is correct

for one program, that does
not mean that is correct for a
similar program

General
Multiple

Change

There are programs P
and Q that are

syntactically similar,
where T is adequate for
P but not for Q

Syntax does not tell
you what needs to be

tested

The syntax of two programs
does not determine the test

sets, this also means that if
two programs use the same
classes, the test cases should
be different because the
messages sent between them
may be different

Anti-
decompositio
n

There is a program P
and component C where
T is adequate for P and
T’ is the subset of T that
can be used for Q, but T’
is not adequate for Q.

A component of a
program (say a
method) can be
adequately tested for
use within one
program, but not

necessarily on its
own.

“When a new subclass is
added (or an existing
subclass is modified) all the
methods inherited from each
of its ancestor super classes
must be retested.”

Anti-
composition

There exist programs P
and Q and a test set T
where T is adequate for
P and the subset of T

that can be used for Q is
adequate for Q, but T is
not valid for P;Q (the
composition of P and Q).

Two programs (or
methods) can be
adequately tested on
their own, but once

combined or used in
another class; they
may no longer be
adequately tested.

“If only one module of a
program is changed, it seems
intuitive that testing should
be able to be limited to just

the modified unit. However,
[this] states that every
dependent unit must be
retested as well.”

Table 1 Test Adequacy Axioms (Hayes, 1995)

5. TEST CASES

Traditional Test Cases
Test cases are often based on the traditional
model of processing. The traditional Von-

Neumann model of processing is in Figure 1.

Figure 1 Von-Neumann Model of Processing

(Labiche, Tosse, Waeselynck, & Durand, 2000)

This model works well for the procedural
paradigm where the input dictates what the

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 42

www.aitp-edsig.org - www.jisar.org

output of a program is. In accordance with this
model, a test case ignores the processing aspect
and focuses on input and output. One may thus
view a test case as an ordered pair: <input,

expected output> (Naik & Tripathy, 2008). This
can be done because the processing is only
dependent on the input into the application, as
there is no program 'state' to consider,
necessarily.

The expected output of a system would normally

be described as either values produced by the
program or messages to the user based on the
input (Naik & Tripathy, 2008). The rationale
behind this assertion is justifiable, as the output

is program-generated and defined structurally
rather than behaviorally (Johnson, 1996). This

also implies test cases may be derived from static
analysis for dynamic testing (discussed ahead).

Object-Oriented Test Cases
Test cases in the object-oriented paradigm are
more complex. The traditional testing model is
insufficient, because objects in a program have

their own states which may well be impacted by
the processing of input parameters (Turner &
Robson, 1993). In addition, these state changes
may not at all be evident from the output of a
program. For example, consider a program that
has objects of this class:

Student

-name: String
-grades: int[]…

+addGrade(int grade): void
+sortedGrades(): int[]…

Figure 2 Student Class Examples

In this example, only the important methods are
listed. Suppose a test case is developed for
sortedGrades(), where sortedGrades() is

supposed to sort the grades array and then return

the sorted values. Consider the following test
case:

<add grades: (100, 50, 75),
expected output of sortedGrades(): 50, 75,

100>

Figure 3 Test Case with Output Results

These tests might pass with the traditional test
model. However, without examining the state of

the Student object, it is unknown whether the

grades array has actually been altered, or if the
sortedGrades() method simply returns a sorted
array of integers without actually altering the
grades array. The method sortedGrades() is

designed to return the grades[] array as a sorted
list without affecting the grades[] array itself.
The reason for this is so that the user may specify
in the interface that they want grades in
ascending order by percentage. However, they
may also want the grades in the order that they
were entered, so it is important to preserve the

original state. This means that not only should the
expected output of the method be tested, but the
expected state of the class should also be
included in the test case. (Figure 4)

<add grades: (100, 50,75),
expected output of sortedGrades(): 50, 75,
100},
expected state of grades[]: {50, 75, 100}>

Figure 4 Test Case with Output and State

Due to this trait of the object-oriented model, the
Von-Neumann model needs to be changed to
accommodate the state of the objects involved in
processing. Robson and Turner suggest the
following adaption (Figure 5):

Figure 5 Von Neumann Model with Added State

Changes (Turner and Robson, 1993)

Indeed, Dechang, et al., 1994 agree that an
effective test case involves both the changing
class state and the sequence of operations. The
object-oriented paradigm is based on objects as
instances of classes; therefore programming is
inherently state-based. Not only that, but an

object’s internal values are not the only thing to
consider when developing test cases. The
associations between objects through method
calls, inheritance, polymorphism, etc. make

object-oriented test case generation much more
complex (Johnson, 1996) (discussed ahead). For

now, it is important to note that there is no strict
input-process-output correspondence in object-
oriented programming. For more advanced
testing, where a method chain is involved for
example, it is recommended that a few more
items are inserted into the test case: (1) a list of
messages and operations that either will or may

be executed by the test, (2) any exceptions that
may or are expected to occur, and (3) any

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 43

www.aitp-edsig.org - www.jisar.org

environmental setup external to the program
(Bhaudaria, et al., 2012). This is in addition to
any supplementary information deemed
necessary.

6. TESTING LEVELS

There are many between object-oriented testing
levels and traditional testing levels. While object-
oriented programming provides functionality not
afforded by procedural programming paradigm –

such as data encapsulation and reuse of objects
– the ease of writing object-oriented programs
does not translate to testing. In fact, many
researchers have observed that testing programs

written in an object-oriented language increases
the effort required for adequate testing (Jain,

2008). In this section, four levels of testing are
described. Typically, in traditional testing, there
is unit and system testing. With object-oriented
testing it is necessary to include two new levels,
class testing and integration testing.

Unit Testing
Unit testing can be used in both object-oriented
and traditional testing. Methods and routines are

tested independently of each other in unit testing
(Johnson, 1996). The defects or faults of other
classes and functions should not impact unit
testing (Roggio & Gordon, 2013). In traditional

testing, tests can be made by defining inputs and
observing to see if the output of a method or set

of methods matches the expected outputs of the
function. These functions or methods need to be
independent units, units which do not call other
methods or use common global data (Hayes,
1994). However, in object-oriented unit testing,
the method cannot interact with other classes or
be dependent on its class’s methods. Testing

individual methods is significantly more difficult.
In fact, some authors state that unit testing
cannot be deduced from one object’s operations
because (when isolated) one may not see the
object's relations to other methods, the class’s
state, and other classes (Labiche, et al., 2000).
Instead, it is suggested that unit testing be

combined with integration testing (Hayes, 1993).

To actually accomplish unit testing on individual
methods, several additional items must be
tracked. The first is any attributes of the class
that may be changed by calling the method. The

second is that other methods in the class called
by a particular method are determined to be
correct. The third is that objects of other classes
used by the method must be first tested and
determined to be correct. This means that the

testing levels are not in a linear order, and have
to be determined from a different method. There
are many different ways of determining levels
such as the flow-graph-based and graph-based

techniques mentioned earlier (Dechang, et al,
1994).

Another way of dealing with dependencies when
trying to unit test is simulating the dependent
classes. This is an extension of a testing
technique known as writing drivers or stubs.

Traditionally, drivers and stubs were written as
“dummy” methods for dependent methods. In
object-oriented testing, this is extended to entire
classes. A driver is written when a class is

dependent on another for data to process. A
driver is usually used with a lower layer in a

hierarchical development model. A stub is a
method written that is handed data to process
when the module that processes data has not
been written yet, or when the module that has
been written has not been tested. Stubs are often
written when testing higher classes in a
hierarchical design.

Class Testing
This version of testing involves testing methods
as they relate to and interact with one another.
Of course, because this is “class testing,” it is only
involved in object-oriented testing (Johnson,

1996). Some authors consider this to be object-

oriented testing’s version of unit testing
(Johnson, 1996) (Labiche, et al., 2000). The
reasoning behind this is that testing a class’s
methods in isolation, without any relation to other
methods, is not actually useful for any nontrivial
task. Methods are meant to interact. In any

event, the purpose of class testing is to test how
a single class’s methods interact with one
another. Again, this means that any classes
referred to by an object’s methods need to be
tested thoroughly beforehand, or the dependent
classes need to be simulated in some way.

Cluster Testing
Cluster testing involves extending class testing to
verify that a group (cluster) of cooperating
classes interacts correctly. According to Johnson,
(Johnson, 1996), a cluster of classes is a group of
classes that are dependent and cooperate with

one another directly. Traditional testing does not
appear to have a clear comparison. In order to
do this, the cooperating classes must have
previously been tested individually, through class
and unit testing if possible. (See next paragraph)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 44

www.aitp-edsig.org - www.jisar.org

Integration & System Testing
In traditional testing, integration testing tests
methods together. This will include methods that
are dependent on other methods or dependent on

common global data (Hayes, 1994). For object-
oriented programming, integration testing is an
extension to cluster testing. In integration
testing, the testing is extended to the system as
a whole. The clusters are combined into the total
system, which is then tested as a whole, with all
the dependencies intact. Another, more

specialized, case of integration testing is system
testing which is running the whole system based
on normal customer usage scenarios as close to
the customer's environment as possible

(Johnson, 1996).

7. OBJECT-ORIENTED FEATURES THAT

AFFECT TESTING

There are many positive features of object-
oriented programming, and although they make
the paradigm very effective, these features make
it more difficult to test. The seven factors
described below have been mentioned by
different authors as factors that affect the amount

of effort needed for adequate testing (Khatri,
Chillar, & Sangwan, 2011) (Badri & Toure, 2012)
(Jain, 2008) (Yeresime, Jayadeep, & Ku, 2008).
The seven factors are encapsulation, inheritance,

polymorphism, cohesion, coupling, dynamic
binding, and abstraction. As described below,
each contributes to greater difficulty in designing

tests (other than cohesion that eases it) over
traditional testing. The feature will be described
and then its effect on testing over traditional
testing will be given.

Encapsulation
Encapsulation is used to restrict access to some

of an object’s attributes and methods. When a
program is written procedurally, then this is not
as much of an issue because programs are
typically full units whose private or protected
methods are not modified by outside programs.

In object-oriented programs, it can become

difficult to observe object interactions with
encapsulation, especially when variables and
methods are not visible outside a class (Khatri, et
al., 2011). This restricted visibility means that it
might be more difficult to be aware of an object’s
state, which is important because private fields
and methods can be affected, such as with getters

or setters. Testing is therefore more difficult
when the state of the object is important for a
class test case and strong encapsulation is used

(Bhadauria, Kothari, & Prasad, 2011). Of course,
it is also important for class and cluster testing
because a class’s or other classes’ methods may
influence an object’s state. If part of that state

cannot be observed, then it will be difficult to not
only design test cases, but also to observe testing
results.

If it is the case that an object is strongly
encapsulated, it is important to find a way to
verify that private fields are correct if they are
modified by other classes (Jain, 2008). The
ability to control a test’s input may also be
difficult because the initial state cannot be

determined, either (Badri & Toure, 2012). This

might mean creating new methods to display a
class’s state, which may or may not go against
the class goals as designed (Badauria, et al.,
2011). Perhaps the attribute was designed to be
invisible to all objects due to security concerns.

Inheritance
It does not make much sense to talk about
inheritance in the case of a procedural program.
The only near comparison is the reuse of methods
or structures, but this should not be as complex
as in object-oriented programs. On the other
hand, inheritance is a method of sharing

attributes and behavior from pre-existing classes
to other subclasses. When one class is a subclass

of another, it does not guarantee that all the
inherited methods are still correct if they have
been verified in the superclass (Khatri, et al.,
2011). The superclass being well tested will not
mean that all the classes that inherit it will be

correct. Any new methods or attributes that have
been added to the subclass may affect properties
inherited by the subclass. Yeresime et al
(Yeresime, et al., 2012) describe an empirical
measure of inheritance, Depth of Inheritance Tree
or DIT. DIT refers to the maximum length of a

path from a class to the root class in an
inheritance tree (Badri & Toure, 2012). The
deeper a class in the tree, the higher the number
of methods that can be inherited; this makes its

behavior more complex, more difficult to predict,
hence more difficult to design effective test cases
(Yeresime, et al., 2012).

These issues result from invisible dependencies
between parent and child classes. A child cannot
then be tested without its parent class because
errors in behavior might easily propagate down
the inheritance tree (Badauria, et al., 2011).
Another issue may arise when an inherited

method is changed in the subclass, but the

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 45

www.aitp-edsig.org - www.jisar.org

subclass has an untouched, inherited method that
uses the changed method. The overridden
method and untouched inherited method need to
be tested. In the example ahead, getNum() of

Child may be called, but it will return a value that
would be unexpected by examining Parent. (See
Figure 6)

public class Parent{
 int num;
 public void setNum(int n){

 num = n;
 }
 public void getNum(){
 return mult();

 }
 public int mult(){

 return num * 2;
 }
}// end class

public class Child extends Parent{
 public int mult(){
 return num * 4;

 }
}// end class

Figure 6 Inheritance Example

Yeresime et al also define a metric for measuring

a different kind of complexity, Number of Children

(NOC) (Yeresime, et al., 2012). NOC is the
number of immediate sub-classes in a class
hierarchy and is meant to be a measure of the
influence a class may have over the system as a
whole (Badri & Toure, 2012). This would be used
as part of cluster and system testing to determine

how much emphasis should be put into testing
that particular class.

These two metrics, DIT and NOC, are taken from
the Chidamber and Kemerer metric suite. They
can be used to determine the overhead involved
in testing. The advice given by Yeresime is that

if DIT is greater than six, then design complexity

is high and testing overhead can be large. If the
NOC is similarly high, then the design of abstract
classes is diluted. The abstraction of classes is
not utilized or the designed abstract classes are
too general. Yeresime et al, also state that these
metrics are untrustworthy for determining faults

themselves and cannot be used to measure fault-
proneness (Yeresime, Et al., 2012). It is difficult
to assign inheritance a precisely measurable
metric at this point, as inheritance comes in many
forms, and inheritance trees can become very
complex. It is therefore important– while still

using inheritance effectively – to try to keep
inheritance as simple as possible.

Polymorphism

Procedural languages do not have a very good
comparison to polymorphism. Polymorphism
allows attributes of an object to take multiple
forms or data types. In addition, an operation
may return more than one type of data or may
accept more than one type of data for parameters
(Khatri, et al., 2011).

Polymorphism is crucial to object-oriented
programming and helps make it versatile and
reusable (Bhadauria, et al., 2011). But all the

different forms an object may take should be
tested. A class or group of classes should be

designed well enough so that the overhead
required to test is low. For example, a class such
as shown in the next figure is not advisable:

public class Foo{
 Object o1;

 Object o2;
 }// end class

Figure 7 Object can Morph into any other Class.

The reason for this cautionary note is that o1 and
o2 can take almost any form because Object is

the superclass of all objects in the Java language.
This would make testing a Herculean task as o1
and o2 could become almost any data type.
Polymorphism should still be used, but the

attributes of a class should be more limited and
well-defined, in regards to both design and
testing. As stated by Hayes (1993), “testing
should be used to ensure that data abstraction
and value restriction are implemented properly.”
In Figure 8, Shape is a class that has three

subclasses, Triangle, Square, and Circle. There
are still nine possible combinations that shape1
and shape2 can take, but this is much more
manageable than the first example. The testing
of attributes should be done in unit and class

testing. Other testing concerns include methods
with return values that are polymorphic as well as

parameters that are polymorphic. This would
more readily be accommodated in cluster or
system testing.

public class Bar{
 Shape shape1;

 Shape shape2;
 …
 }// end class

Figure 8 Well Defined, Limited Attributes

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 46

www.aitp-edsig.org - www.jisar.org

According to Jain (Jain, 2008), the first major
type of polymorphism is called “ad hoc
polymorphism.” This type of polymorphism is
considered completely syntactical, that is, entities

are polymorphic only because they share a name
and do not have to be behaviorally linked. This
can best be explained by examining its first
subtype, overloading. Overloading refers to
separate methods which share a name. These
methods may have completely different
parameters and method bodies. A group of

overloaded methods can be treated as completely
separate methods from one another during
testing without any extra effort. The second type
of ad hoc polymorphism, coercion, is a conversion

from one class or data type to another during
code execution. This is also fairly easy to test

because the conversion type can be determined
statically from code. For example, when 0.50 *
someInt + 6.9 is executed, the integer someInt
will be converted to a float or double to coincide
with the data type of 0.50.

A second major type of polymorphism is called

universal polymorphism. This is considered to be
“true” polymorphism, and refers to an object
being able to become many different data types
(Jain, 2008). This is an umbrella for two
subtypes, inclusive and parametric
polymorphism. Inclusive polymorphism is

polymorphism where a subclass can be used in

place of a superclass (see Dynamic Binding). In
parametric polymorphism a method or object can
be written in a generic manner through
parameters which are given a class value when
the object is instantiated. In this way
parameterized types are not “written in stone,”

which implies they are not dependent on any one
class. An object or function can be used in
different contexts without any conversion or run-
time testing needed in this type.

These types of polymorphism should be taken
into account for testing. Indeed, understanding

all the interactions that can result from the

polymorphic nature of some objects can be very
difficult (but necessary) to keep in mind when
developing test cases (Jain, 2008). Ad hoc
polymorphism is less testing intense because the
tests can be derived statically. Universal
polymorphism, as the name might imply, is more

difficult to test because the forms an entity can
take may be wide-ranging.

Cohesion
Cohesion is a measure of the degree to which the

methods of a class create a single, well-defined

class (Khatri, et al., 2011). In procedural
programming, cohesion refers how well a module
of code (typically a file) belongs together as a
single unit. Most of the rest of this discussion

talks about how a class is cohesive in terms of
instance variables. Procedural programs do not
have instance variables, but instead information
is passed between methods as parameters.
Therefore, cohesion in the procedural realm is
concerned with methods dealing with similar
parameters and functionality. In OO, if a class is

cohesive (its methods contribute to the class as a
single unit) then the class is reusable, more
reliable, and more easily understood. Cohesion
is related to coupling; if there is high cohesion,

there is low coupling and vice-versa (Khatri, et
al., 2011). High cohesion means that the

methods within a class are similar in the variables
used and the tasks they perform. This means test
data are easier to create and more easily
understood. Low cohesion means that there are
many different types of data that need to be
defined for a specific class (Yeresime, et al.,
2013). This complexity in design leads to higher

costs of testing, and renders testing itself more
error-prone.
Another defined metric for this testing factor is
the Lack of Cohesion in Methods (LCOM). LCOM
is defined as the mathematical difference
between the number of methods whose instance

variables are completely dissimilar, and the

number of methods whose instance variables are
shared (Yeresime, et al., 2012). See Figure 9.

Consider the three sets of instance variables
for a class with three methods:

1: {a, b, c, d, e}l 2:{a, b, e}, and 3: {x, y.
z}

Figure 9 Method Cohesion

Methods 1 and 2 have shared instance variables,
and, therefore, have cohesion. However, 1 and 3

and 2 and 3 have no shared instance variables,
and therefore no cohesion. In this case, the
LCOM would be one (2 non-cohesive method pairs

– 1 cohesive method pair). If LCOM is high, it
means that a class is not cohesive (and might be
a candidate for refactoring into two classes. At the

testing stage, a class will need to have different
testing sets for the different methods rather than
one testing set for the entire class. This leads to
confusion and overall complexity of the testing
process.

LCOM is found in the same suite as DIT and NOC

(the Chidamber and Kemerer metric suite)
(Yeresime, et al., 2012). The authors Badri and

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 47

www.aitp-edsig.org - www.jisar.org

Fadel (Badri & Toure, 2012) found that LCOM and
lines of code (LOC) were the most predictive
testing metrics over DIT, NOC, (both previously
discussed) and CBO which is described below.

Coupling
Coupling is a measure of the dependency
between modules. Strong coupling is undesirable
for many reasons, chiefly of which is that it
prevents the change of components
independently of the whole. (Also, many feel

strong coupling cohesion is the antithesis of
highly-valued high cohesion, which arguably
results in low coupling) – Strong coupling means
that all (or many) of the methods coupled

together need to be understood as a set, instead
of each class operating as its own unit (Khatri, et

al., 2011). Strong coupling negatively
contributes to testing, because it implies that unit
testing cannot be done effectively. In good
design, coupling is kept to a minimum especially
for a large or complex system where coupling
could result in cluster and system testing
absorbing the majority of testing resources

(Badauria, et al., 2011).

An additional Chidamber and Kemerer metric is
Coupling Between Objects (CBO) (Yeresime, et
al., 2012). CBO is a count of the number of
classes to which a class is coupled (Badri & Toure,

2013), and represents still another measure of

complexity. High CBO leads to less reliability, and
the higher interoperability between classes
causes unit testing to be difficult (Yeresime, et al.,
2012). However, some interoperability is
generally required for object-oriented
programming as objects need to be able to

communicate in some way. This implies the
necessity of cluster testing.

Other metrics for software complexity are
efferent coupling (Ce) and afferent coupling (Ca).
These come from the R. C. Martins metric suite
(Yeresime, et al., 2012). Efferent coupling occurs

between packages and is the measure of all the

classes external to a package that are used within
the package (See Figure 10). In contrast,
afferent coupling between packages counts all the
classes external to a package that are dependent
on the classes within a package. (See Figure 11)
In conjunction, these two help measure the

stability of a package as a whole (Yeresime, et al.,

2012), where stability is measured
(Scale 0 to 1 with 0 absolute stability; 1
absolutely unstable.) Stability, in a sense then, is
a measure of how well a package can adapt to

change. In a testing sense, stability can imply
how changes in one particular package might
impact other classes. If this impact is high due to
high instability, then

much regression testing must be done in other
packages as part of cluster or system testing.

Figure 10 Efferent coupling (Ce)

Figure 11 Afferent coupling (Ca)

Dynamic Binding
Dynamic binding is a result of either inclusive
polymorphism or type parameterization
polymorphism in some languages. For example,
in Java the return type of a function or even the
types of some fields can be decided at run-time

rather than compile time: (Figure 12) Dynamic
binding introduces concerns when deciding how
to design test cases, because the exact data type
of attributes cannot be known statically (Khatri,
et al., 2011) .

public class Foo <E> {
 E field;
 public E getField(){
 return field;
 }
 public void setField (E field){

 this.field = field;
 }
}

Figure 12 Dynamic Binding is Determined at
Runtime

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 48

www.aitp-edsig.org - www.jisar.org

The class in Figure 12 may be instantiated in
many ways and with many data types through
parameterization. Thus when designing test cases

in parameter polymorphism, it may only be
necessary to test based on how other classes in
the program will instantiate Foo. Those data
types that are used for parameterization in other
classes must be considered for testing cases, but
others need not be. This would be a part of
cluster or system testing. Unit testing or class

testing would be difficult to accomplish because it
would not be known (without looking at the
system as a whole) how Foo might be
instantiated. The behaviors and properties of E

might be incredibly varied. Class and unit testing
should therefore probably not be done in this case

of dynamic binding, due to its complexity as a

unit. With the whole system, it can most likely be
determined which data types E might take.

Inclusive polymorphism, in contrast, may be a
simpler form of dynamic binding to test (Jain,

2008). This is because it is often known what
classes inherit a superclass. In this way, it can
be known what types an object may be bound to
at run-time. All of these dynamic bindings must
be included in a test case.

Abstraction

An abstract class is a type of class that cannot be
instantiated. An interface is used as a template
for other classes. If the class is just abstract and
not an interface, it provides useful methods as
well as variable fields (Khatri, et al., 2011).
However, these defined methods cannot be

tested directly and analysis is done from their
subclasses, because one may not instantiate an
abstract class or an interface in most languages
(Badauria, et al., 2011). … This can lead to major
overhead. If an abstract class is inherited by
more than one class, how many of those child
classes should be tested? Even if the child classes

have not overridden the inherited methods, all
would need to be tested because the abstract

class itself cannot be tested, directly.

An R.C. Martins metric described by Yeresime et
al is abstractness (Yeresime, et al., 2012).
Abstractness is a ratio of the number of abstract

classes/interfaces to the total number of classes
in a package. This measure is used with the
instability measure (see Coupling) to create a line
graph (Yeresime, et al., 2012). (See Figure 13)
These points along the “main sequence” line are
considered to be balanced between abstraction

and stability. These are well designed and more

easily tested. This means that more abstract and
unstable, the more difficult to test.

Figure 13 A-I Graph (Yeresime, et al., 2012)

8. CONCLUSION

Object-oriented testing is based not only on both
the input and output of an object’s methods, but

also how that input and output may influence the
object’s state. . While the many beneficial
features of the object-oriented paradigm are
important, the increases in program complexity
(sometimes in unintended and unseen ways)
often negatively impacts testing in terms of effort

and time. Some of these features, like cohesion
help lower the amount of testing required, but
others cause testing efforts to rise.

Traditional testing involves the viewing of input
and output of a program in a procedural manner.
Test cases tend to be one dimensional. In object-

oriented testing, however, test cases are two
dimensional, because changes in an object’s state
must be considered. Traditional testing involves
both unit and system testing, while object-
oriented testing requires class testing (for how
the methods of a single object work together) and
cluster testing (for how coupled objects change

each other’s’ states). Thus, it is important to note
that verification testing (the testing done by the
developers) has been truly changed by the
object-oriented paradigm, while validation (that
done by the end-user) has not.

Moving forward, it will continue to be important
to define more and better ways for testing object-
oriented programs. Some already exist, but they
are wide-ranging and there has been no major
consensus as to what the best way to test is or
what factors are most important in testing. Most
focus on the fact that order to test object-oriented

modules is not as definite as in traditional
programs, where the order of tests follows a
procedural path. In object oriented testing, an

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 49

www.aitp-edsig.org - www.jisar.org

object may send a message to another object at
any time.

9. REFERENCES

Badri, Mourad, and Fadel Toure, "Empirical

Analysis Of Object-Oriented Design Metrics
For Predicting Unit Testing Effort Of Classes,"
Journal Of Software Engineering &
Applications 5.7 (2012): 513-526.

Bhadauria, Sarita Singh, Abhay Kothari, and Lalji
Prasad, "A Full Featured Component (Object-
Oriented) Based Architecture Testing Tool"
International Journal Of Computer Science

Issues (IJCSI) 8.4 (2011): 618-627.

Gu, Dechang, Yin Zhong, and Sarwar Ali. “On
Testing of Classes in Object-Oriented
Programs” Proceedings of the 1994
Conference of the Centre for Advanced
Studies on Collaborative Research

Hayes, Jane Huffman. “Testing of Object-

Oriented Programming Systems (OOPS): A
Fault-Based Approach,” Notes in Computer
Science, Vol. 858 (1994): 205-220.

Jain, Ajeet K. "Testing Polymorphism in Object-

Oriented Programming." ICFAI Journal of

Computer Sciences 2.4 (2008): pages 43-53.

Johnson, Jr., Morris S. A Survey of Testing

Techniques for Object-Oriented Systems,

Proceedings of the 1996 Conference of the
Centre for Advanced Studies on Collaborative
research (CASCON '96)

Khatri, Mrs. Sujata, Chhillar Dr. R. S., and
Sangwan Mrs. Arti "Analysis Of Factors
Affecting Testing In Object-oriented
Systems," International Journal On Computer
Science And Engineering 3 (2011): 1191.

Labiche, Y., Thevenod-Fosse, P., Waeselynck, H.,

and Durand, M.-H, "Testing Levels for Object-
Oriented Software," Proceedings of the 22nd
International Conference on Software
Engineering, pages 136-145

Naik, Kshirasagar and Priyadarshi Tripathy

Software Testing And Quality Assurance:
Theory And Practice. John Wiley & Sons,
2008 pages 7-27

Turner, C.D. and Robson, D.J. "The State-Based

Testing of Object-Oriented Programs,"
Software Maintenance, 1993 CSM-93,

Proceedings., Conference on Software
Maintenance pages 302-310, 27-30 Sep1993

Yeresime, Suresh, Pati Jayadeep, and Rath

Santanu Ku "Effectiveness of Software
Metrics For Object-Oriented System,"

Procedia Technology, Volume 6, 2nd

International Conference on Communication,
Computing &Security [ICCCS-2012] 420-42

