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Abstract 

 
Software testing is an important part of any software development.  With the emphasis on developing 
systems using modern object oriented technologies, a critically-sensitive issue arises in the area of 
testing.  While traditional testing is reasonably well understood, object oriented testing presents a host 
of new challenges.  This paper focuses on what differentiates the two in test cases, testing levels, and 

OO features affecting testing.  
 

Keywords:  Object-oriented testing, traditional testing, testing levels 
 
 

1. INTRODUCTION 
 

Object-oriented testing is based not only on both 
the input and output of an object’s methods, but 
also how that input and output may influence the 
object’s state.  Many of the positive features 
touted by object-oriented languages can map 
directly into increases in testing complexity.  

While the many beneficial features of the object-
oriented paradigm are important, the increases in 
program complexity (sometimes in unintended 
and unseen ways) often negatively impacts 

testing in terms of effort and time. 
 
Traditional testing involves the viewing of input 

and output of a program in a procedural manner.  
Both types of testing still involve tried and true 
testing types.  In fact, many of the differences 
show up in white-box testing because the two 
types of programming can often solve the same 
problems using the same input and output. 
 

This paper seeks to determine how testing is 
different in an object-oriented paradigm versus 

that of a traditional (procedural) program. 
 

2. LITERATURE REVIEW 
 

Research done on object oriented testing has 
changed over the years. Many early papers 

written on the subject lamented the inability of 
researchers to address the differences between 
object-oriented programs and procedural testing.  
As Turner and Robson pointed out, “the vast 

majority of research conducted into the testing of 
object-oriented programs fails to address the 
difference between the object-oriented and more 

traditional programming techniques,” (Turner & 
Robson, 1993). 
 
At around that same time, Hayes wrote a paper 
identifying some aspects of object-oriented 
programs and how that may affect systems 
(Hayes, 1994).  The paper also described a 

testing methodology that the author believed 

file:///C:/Users/hunsingerds/AppData/Desktop/AppData/Local/Temp/Temp1_RE%253a_paper.__Version_2.zip/A%20Comparison%20Pt.%206.18.doc
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should be recommended for OO-programs.  
Hayes was successful at identifying the problems 
involved with inheritance, but did not discuss 
many other issues in much depth, such as 

polymorphism and dynamic binding. This was a 
problem with many early papers on the subject, 
which primarily focused on objects’ states and 
inheritance.  It became increasingly evident that 
many more features of object-oriented 
programming need to be considered for testing by 
looking at more recent papers, such as that of 

Jain, “Testing Polymorphism in Object-Oriented 
Programming,” which described how advanced 
polymorphism makes it difficult to understand all 
the possible interactions among classes (Jain, 

2008). 
 

Gu, et al., wrote a paper detailing three processes 
to select test data and for evaluating the coverage 
of those tests.  They were the flow-graph-based 
approach, graph-based class testing, and the 
ASTOOT approach, which used algebraic 
specification to determine test cases.  These 
methods derive test data, for example the flow-

graph-based process uses the flow of control from 
method to method to model test data while the 
graph-based process models transitions between 
different states of an object.  These focused on 
program flow and state changes and ignored 
other features of OO as well.  The authors also 

discussed how the testing of object-oriented 

programs must differ from traditional testing 
methods (Gu, et al., 1994). 
 
By 1996, there was already enough literature for 
Johnson to report on the different testing levels 
and techniques proposed by researchers 

(Johnson, 1996).   However, there was not much 
of a consensus at that point for a standardized 
system of testing.  For example, there was a 
disagreement on unit-testing, in that some 
authors disagree that it should be involved in 
object-oriented testing at all. 
 

As time went on, the differences between object-

oriented and traditional (procedural) testing 
became more evident.  For example Khatri, et al., 
described many features – encapsulation, 
inheritance, polymorphism, etc. – of object-
oriented programming and how they made it 
more difficult to decide how test should be done 

(see Object-Oriented Features that Affect Testing 
below) (Khatri, et al., 2011).  However, that 
paper did not describe in detail how testing should 
be done.  Bhadauria described the same features, 
but also gave a sequence of testing levels and 
what kinds of tests should be run in each 

(Bhadauria, 2011).  Some authors described 
design metrics that may help programmers 
determine beforehand how difficult to test their 
design may be (Badri, 2012). This sort of 

empirical view of object-oriented testing is 
another useful area of study.  Authors have 
discussed both new and older metrics for 
measuring testability, and which are the most 
valuable to object-oriented programming 
(Yeresime, et al., 2012). 

 
3.  BACKGROUND:  OBJECTIVES OF 

TRADITIONAL AND OBJECT-ORIENTED 
TESTING 

 
There are many people with vested interests in 
the testing process, including programmers, 
testers, program managers, and end-users.  
These people are some of the stakeholders in the 

system, those that are impacted by the system or 
influenced by its behavior.  Individuals or groups 
of individuals acting in these roles are those who 
depend on testing to show the systems performs 
as intended.  The major objective in testing is to 
discover as many faults, errors, and defects as 

possible with minimum effort and cost (Khatri, 
Chillar, and Sangwan, 2012). According to 
Johnson (Johnson, 1996), “Testing is the process 
of executing a program with the intent to yield 

measurable errors.”  Testing is not about showing 
that there are no errors – effective testing comes 
from creating effective test cases that can coerce 

out errors and failures (Naik & Tripathy, 2013).  
This can help designers find 'defects' (term 
attributed to design) and programmers find 
'faults' (term normally attributed to 
programming).  Given this backdrop, however, 
what constitutes an effective test is quite different 
when contrasting traditional (procedural) testing 

and object-oriented testing (Dechang, Zhong, & 
Ali, 1994) 

 
4. TEST ADEQUACY AXIOMS 

 
Elaine Weyuker defined eleven axioms to 

determine the adequacy of a test set (Hayes, 
1994).  Some are less interesting as they apply 
equally to both testing paradigms, such as the 
applicability axiom (Every program has an 
adequate test set), the monotonicity axiom (It is 
possible to create a set of test cases that is larger 
than is necessary), the renaming axiom (If P is 

simply a renaming of Q, and T is adequate for Q, 
then T is adequate for P), or the non-exhaustive 
applicability (Program P is adequately tested by 
T, where T is a non-exhaustive test set).  Below 
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is a list of the axioms to consider when discussing 
the difference between traditional and object-
oriented testing.  (Table 1) 

 

 

 

Axiom Description Traditional Object-Oriented 

Complexity For all n, there is a 
program  that  is 
adequately tested by a 
test set of size n, but 
not by a test set of size 
n-1 

There is a minimum 
set of inputs that 
must be tested 

There is a minimum set of 
inputs and object states that 
must be tested 

Anti-
extensionality 

There are programs P 
and Q that compute the 

same functions 
(semantically similar), 
where T is adequate for 
P but not for Q 

It cannot be assumed 
that the same test 

cases can be used for 
different programs 
that accomplish the 
same things 

It cannot be assumed that 
the same test cases can be 

used for functionally similar 
programs, this can be 
extended to mean that just 
because one state is correct 

for one program, that does 
not mean that is correct for a 
similar program 

General 
Multiple 

Change 

There are programs P 
and Q that are 

syntactically similar, 
where T is adequate for 
P but not for Q 

Syntax does not tell 
you what needs to be 

tested 

The syntax of two programs 
does not determine the test 

sets, this also means that if 
two programs use the same 
classes, the test cases should 
be different because the 
messages sent between them 
may be different 

Anti-
decompositio
n 

There is a program P 
and component C where 
T is adequate for P and 
T’ is the subset of T that 
can be used for Q, but T’ 
is not adequate for Q. 

A component of a 
program (say a 
method) can be 
adequately tested for 
use within one 
program, but not 

necessarily on its 
own. 

“When a new subclass is 
added (or an existing 
subclass is modified) all the 
methods inherited from each 
of its ancestor super classes 
must be retested.” 

Anti-
composition 

There exist programs P 
and Q and a test set T 
where T is adequate for 
P and the subset of T 

that can be used for Q is 
adequate for Q, but T is 
not valid for P;Q (the 
composition of P and Q). 

Two programs (or 
methods) can be 
adequately tested on 
their own, but once 

combined or used in 
another class; they 
may no longer be 
adequately tested. 

“If only one module of a 
program is changed, it seems 
intuitive that testing should 
be able to be limited to just 

the modified unit.  However, 
[this] states that every 
dependent unit must be 
retested as well.” 

Table 1 Test Adequacy Axioms (Hayes, 1995) 
 

 
5.   TEST CASES 

 
Traditional Test Cases 
Test cases are often based on the traditional 
model of processing.  The traditional Von-

Neumann model of processing is in Figure 1. 

 

  
Figure 1 Von-Neumann Model of Processing 

(Labiche, Tosse, Waeselynck, & Durand, 2000) 
 

This model works well for the procedural 
paradigm where the input dictates what the 
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output of a program is.  In accordance with this 
model, a test case ignores the processing aspect 
and focuses on input and output.  One may thus 
view a test case as an ordered pair: <input, 

expected output> (Naik & Tripathy, 2008).  This 
can be done because the processing is only 
dependent on the input into the application, as 
there is no program 'state' to consider, 
necessarily. 
 
The expected output of a system would normally 

be described as either values produced by the 
program or messages to the user based on the 
input (Naik & Tripathy, 2008).  The rationale 
behind this assertion is justifiable, as the output 

is program-generated and defined structurally 
rather than behaviorally (Johnson, 1996).  This  

also implies test cases may be derived from static 
analysis for dynamic testing (discussed ahead). 
 
Object-Oriented Test Cases 
Test cases in the object-oriented paradigm are 
more complex. The traditional testing model is 
insufficient, because objects in a program have 

their own states which may well be impacted by 
the processing of input parameters (Turner & 
Robson, 1993).  In addition, these state changes 
may not at all be evident from the output of a 
program.  For example, consider a program that 
has objects of this class:  

  

Student 

-name: String 
-grades: int[]… 

+addGrade(int grade): void 
+sortedGrades(): int[]… 

Figure 2 Student Class Examples 
 
In this example, only the important methods are 
listed.  Suppose a test case is developed for 
sortedGrades(), where sortedGrades() is 

supposed to sort the grades array and then return 

the sorted values.  Consider the following test 
case: 
 

<add grades: (100, 50, 75),  
expected output of sortedGrades(): 50, 75, 

100>  

Figure 3 Test Case with Output Results 
 
These tests might pass with the traditional test 
model.  However, without examining the state of 

the Student object, it is unknown whether the 

grades array has actually been altered, or if the 
sortedGrades() method simply returns a sorted 
array of integers without actually altering the 
grades array. The method sortedGrades() is 

designed to return the grades[ ] array as a sorted 
list without affecting the grades[ ] array itself.  
The reason for this is so that the user may specify 
in the interface that they want grades in 
ascending order by percentage.  However, they 
may also want the grades in the order that they 
were entered, so it is important to preserve the 

original state. This means that not only should the 
expected output of the method be tested, but the 
expected state of the class should also be 
included in the test case. (Figure 4) 

 

<add grades: (100, 50,75),                                      
expected output of sortedGrades(): 50, 75, 
100},  
expected state of grades[]: {50, 75, 100}> 

Figure 4 Test Case with Output and State  
 

Due to this trait of the object-oriented model, the 
Von-Neumann model needs to be changed to 
accommodate the state of the objects involved in 
processing.  Robson and Turner suggest the 
following adaption (Figure 5): 

 

 
Figure 5 Von Neumann Model with Added State 

Changes (Turner and Robson, 1993) 

 
Indeed, Dechang, et al., 1994 agree that an 
effective test case involves both the changing 
class state and the sequence of operations.  The 
object-oriented paradigm is based on objects as 
instances of classes; therefore programming is 
inherently state-based.  Not only that, but an 

object’s internal values are not the only thing to 
consider when developing test cases.  The 
associations between objects through method 
calls, inheritance, polymorphism, etc. make 

object-oriented test case generation much more 
complex (Johnson, 1996) (discussed ahead).  For 

now, it is important to note that there is no strict 
input-process-output correspondence in object-
oriented programming.  For more advanced 
testing, where a method chain is involved for 
example, it is recommended that a few more 
items are inserted into the test case: (1) a list of 
messages and operations that either will or may 

be executed by the test, (2) any exceptions that 
may or are expected to occur, and (3) any 
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environmental setup external to the program 
(Bhaudaria, et al., 2012). This is in addition to 
any supplementary information deemed 
necessary.  

 
6.  TESTING LEVELS 

 
There are many between object-oriented testing 
levels and traditional testing levels.  While object-
oriented programming provides functionality not 
afforded by procedural programming paradigm – 

such as data encapsulation and reuse of objects 
– the ease of writing object-oriented programs 
does not translate to testing.  In fact, many 
researchers have observed that testing programs 

written in an object-oriented language increases 
the effort required for adequate testing (Jain, 

2008).  In this section, four levels of testing are 
described.  Typically, in traditional testing, there 
is unit and system testing.  With object-oriented 
testing it is necessary to include two new levels, 
class testing and integration testing. 
 

Unit Testing 
Unit testing can be used in both object-oriented 
and traditional testing.  Methods and routines are 

tested independently of each other in unit testing 
(Johnson, 1996).  The defects or faults of other 
classes and functions should not impact unit 
testing (Roggio & Gordon, 2013).  In traditional 

testing, tests can be made by defining inputs and 
observing to see if the output of a method or set 

of methods matches the expected outputs of the 
function.  These functions or methods need to be 
independent units, units which do not call other 
methods or use common global data (Hayes, 
1994).  However, in object-oriented unit testing, 
the method cannot interact with other classes or 
be dependent on its class’s methods.  Testing 

individual methods is significantly more difficult.  
In fact, some authors state that unit testing 
cannot be deduced from one object’s operations 
because (when isolated) one may not see the 
object's relations to other methods, the class’s 
state, and other classes (Labiche, et al., 2000).  
Instead, it is suggested that unit testing be 

combined with integration testing (Hayes, 1993). 
 
To actually accomplish unit testing on individual 
methods, several additional items must be 
tracked.  The first is any attributes of the class 
that may be changed by calling the method.  The 

second is that other methods in the class called 
by a particular method are determined to be 
correct.  The third is that objects of other classes 
used by the method must be first tested and 
determined to be correct.  This means that the 

testing levels are not in a linear order, and have 
to be determined from a different method.  There 
are many different ways of determining levels 
such as the flow-graph-based and graph-based 

techniques mentioned earlier (Dechang, et al, 
1994). 
 
Another way of dealing with dependencies when 
trying to unit test is simulating the dependent 
classes. This is an extension of a testing 
technique known as writing drivers or stubs.  

Traditionally, drivers and stubs were written as 
“dummy” methods for dependent methods.  In 
object-oriented testing, this is extended to entire 
classes.  A driver is written when a class is 

dependent on another for data to process.  A 
driver is usually used with a lower layer in a 

hierarchical development model.  A stub is a 
method written that is handed data to process 
when the module that processes data has not 
been written yet, or when the module that has 
been written has not been tested.  Stubs are often 
written when testing higher classes in a 
hierarchical design. 

 
Class Testing 
This version of testing involves testing methods 
as they relate to and interact with one another.  
Of course, because this is “class testing,” it is only 
involved in object-oriented testing (Johnson, 

1996). Some authors consider this to be object-

oriented testing’s version of unit testing 
(Johnson, 1996) (Labiche, et al., 2000).  The 
reasoning behind this is that testing a class’s 
methods in isolation, without any relation to other 
methods, is not actually useful for any nontrivial 
task.  Methods are meant to interact.  In any 

event, the purpose of class testing is to test how 
a single class’s methods interact with one 
another.  Again, this means that any classes 
referred to by an object’s methods need to be 
tested thoroughly beforehand, or the dependent 
classes need to be simulated in some way.  

 

 

Cluster Testing 
Cluster testing involves extending class testing to 
verify that a group (cluster) of cooperating 
classes interacts correctly.  According to Johnson, 
(Johnson, 1996), a cluster of classes is a group of 
classes that are dependent and cooperate with 

one another directly. Traditional testing does not 
appear to have a clear comparison.  In order to 
do this, the cooperating classes must have 
previously been tested individually, through class 
and unit testing if possible.  (See next paragraph) 
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Integration & System Testing 
In traditional testing, integration testing tests 
methods together.  This will include methods that 
are dependent on other methods or dependent on 

common global data (Hayes, 1994).  For object-
oriented programming, integration testing is an 
extension to cluster testing.  In integration 
testing, the testing is extended to the system as 
a whole.  The clusters are combined into the total 
system, which is then tested as a whole, with all 
the dependencies intact.  Another, more 

specialized, case of integration testing is system 
testing which is running the whole system based 
on normal customer usage scenarios as close to 
the customer's environment as possible 

(Johnson, 1996). 

 
7.  OBJECT-ORIENTED FEATURES THAT 

AFFECT TESTING 

 
There are many positive features of object-
oriented programming, and although they make 
the paradigm very effective, these features make 
it more difficult to test.  The seven factors 
described below have been mentioned by 
different authors as factors that affect the amount 

of effort needed for adequate testing (Khatri, 
Chillar, & Sangwan, 2011) (Badri & Toure, 2012) 
(Jain, 2008) (Yeresime, Jayadeep, & Ku, 2008).  
The seven factors are encapsulation, inheritance, 

polymorphism, cohesion, coupling, dynamic 
binding, and abstraction.  As described below, 
each contributes to greater difficulty in designing 

tests (other than cohesion that eases it) over 
traditional testing.  The feature will be described 
and then its effect on testing over traditional 
testing will be given. 
 
Encapsulation 
Encapsulation is used to restrict access to some 

of an object’s attributes and methods.  When a 
program is written procedurally, then this is not 
as much of an issue because programs are 
typically full units whose private or protected 
methods are not modified by outside programs.  

In object-oriented programs, it can become 

difficult to observe object interactions with 
encapsulation, especially when variables and 
methods are not visible outside a class (Khatri, et 
al., 2011).  This restricted visibility means that it 
might be more difficult to be aware of an object’s 
state, which is important because private fields 
and methods can be affected, such as with getters 

or setters.  Testing is therefore more difficult 
when the state of the object is important for a 
class test case and strong encapsulation is used 

(Bhadauria, Kothari, & Prasad, 2011).  Of course, 
it is also important for class and cluster testing 
because a class’s or other classes’ methods may 
influence an object’s state.  If part of that state 

cannot be observed, then it will be difficult to not 
only design test cases, but also to observe testing 
results. 

 
If it is the case that an object is strongly 
encapsulated, it is important to find a way to 
verify that private fields are correct if they are 
modified by other classes (Jain, 2008).  The 
ability to control a test’s input may also be 
difficult because the initial state cannot be 

determined, either (Badri & Toure, 2012).  This 

might mean creating new methods to display a 
class’s state, which may or may not go against 
the class goals as designed (Badauria, et al., 
2011).  Perhaps the attribute was designed to be 
invisible to all objects due to security concerns. 
 

Inheritance 
It does not make much sense to talk about 
inheritance in the case of a procedural program.  
The only near comparison is the reuse of methods 
or structures, but this should not be as complex 
as in object-oriented programs.  On the other 
hand, inheritance is a method of sharing 

attributes and behavior from pre-existing classes 
to other subclasses.  When one class is a subclass 

of another, it does not guarantee that all the 
inherited methods are still correct if they have 
been verified in the superclass (Khatri, et al., 
2011).  The superclass being well tested will not 
mean that all the classes that inherit it will be 

correct.  Any new methods or attributes that have 
been added to the subclass may affect properties 
inherited by the subclass.  Yeresime et al 
(Yeresime, et al., 2012) describe an empirical 
measure of inheritance, Depth of Inheritance Tree 
or DIT.  DIT refers to the maximum length of a 

path from a class to the root class in an 
inheritance tree (Badri & Toure, 2012).  The 
deeper a class in the tree, the higher the number 
of methods that can be inherited; this makes its 

behavior more complex, more difficult to predict, 
hence more difficult to design effective test cases 
(Yeresime, et al., 2012). 

 
These issues result from invisible dependencies 
between parent and child classes.  A child cannot 
then be tested without its parent class because 
errors in behavior might easily propagate down 
the inheritance tree (Badauria, et al., 2011). 
Another issue may arise when an inherited 

method is changed in the subclass, but the 
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subclass has an untouched, inherited method that 
uses the changed method.  The overridden 
method and untouched inherited method need to 
be tested.  In the example ahead, getNum() of 

Child may be called, but it will return a value that 
would be unexpected by examining Parent.  (See 
Figure 6) 
 
public class Parent{ 
    int num; 
    public void setNum(int n){ 

 num = n; 
    } 
    public void getNum(){ 
 return mult(); 

    } 
   public int mult(){ 

 return num * 2; 
    } 
}// end class 
 
public class Child extends Parent{ 
    public int mult(){ 
 return num * 4; 

    } 
}// end class  
 

Figure 6 Inheritance Example 
 
Yeresime et al also define a metric for measuring 

a different kind of complexity, Number of Children 

(NOC) (Yeresime, et al., 2012).  NOC is the 
number of immediate sub-classes in a class 
hierarchy and is meant to be a measure of the 
influence a class may have over the system as a 
whole (Badri & Toure, 2012). This would be used 
as part of cluster and system testing to determine 

how much emphasis should be put into testing 
that particular class. 
 
These two metrics, DIT and NOC, are taken from 
the Chidamber and Kemerer metric suite.  They 
can be used to determine the overhead involved 
in testing.  The advice given by Yeresime is that 

if DIT is greater than six, then design complexity 

is high and testing overhead can be large.  If the 
NOC is similarly high, then the design of abstract 
classes is diluted.     The abstraction of classes is 
not utilized or the designed abstract classes are 
too general.  Yeresime et al, also state that these 
metrics are untrustworthy for determining faults 

themselves and cannot be used to measure fault-
proneness (Yeresime, Et al., 2012).   It is difficult 
to assign inheritance a precisely measurable 
metric at this point, as inheritance comes in many 
forms, and inheritance trees can become very 
complex.  It is therefore important– while still 

using inheritance effectively – to try to keep 
inheritance as simple as possible. 
 
Polymorphism 

Procedural languages do not have a very good 
comparison to polymorphism.  Polymorphism 
allows attributes of an object to take multiple 
forms or data types.  In addition, an operation 
may return more than one type of data or may 
accept more than one type of data for parameters 
(Khatri, et al., 2011).   

 
Polymorphism is crucial to object-oriented 
programming and helps make it versatile and 
reusable (Bhadauria, et al., 2011).  But all the 

different forms an object may take should be 
tested. A class or group of classes should be 

designed well enough so that the overhead 
required to test is low.  For example, a class such 
as shown in the next figure is not advisable: 
 

public class Foo{ 
 Object o1; 

 Object o2; 
 }// end class 

Figure 7 Object can Morph into any other Class. 

 
The reason for this cautionary note is that o1 and 
o2 can take almost any form because Object is 

the superclass of all objects in the Java language.  
This would make testing a Herculean task as o1 
and o2 could become almost any data type.  
Polymorphism should still be used, but the 

attributes of a class should be more limited and 
well-defined, in regards to both design and 
testing.  As stated by Hayes (1993), “testing 
should be used to ensure that data abstraction 
and value restriction are implemented properly.” 
In Figure 8, Shape is a class that has three 

subclasses, Triangle, Square, and Circle.  There 
are still nine possible combinations that shape1 
and shape2 can take, but this is much more 
manageable than the first example. The testing 
of attributes should be done in unit and class 

testing.   Other testing concerns include methods 
with return values that are polymorphic as well as 

parameters that are polymorphic.  This would 
more readily be accommodated in cluster or 
system testing. 
 

public class Bar{ 
 Shape shape1; 

 Shape shape2; 
   … 
 }// end class 

Figure 8 Well Defined, Limited Attributes 
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According to Jain (Jain, 2008), the first major 
type of polymorphism is called “ad hoc 
polymorphism.” This type of polymorphism is 
considered completely syntactical, that is, entities 

are polymorphic only because they share a name 
and do not have to be behaviorally linked.  This 
can best be explained by examining its first 
subtype, overloading.  Overloading refers to 
separate methods which share a name.  These 
methods may have completely different 
parameters and method bodies.  A group of 

overloaded methods can be treated as completely 
separate methods from one another during 
testing without any extra effort.  The second type 
of ad hoc polymorphism, coercion, is a conversion 

from one class or data type to another during 
code execution.  This is also fairly easy to test 

because the conversion type can be determined 
statically from code.  For example, when 0.50 * 
someInt + 6.9 is executed, the integer someInt 
will be converted to a float or double to coincide 
with the data type of 0.50. 
 
A second major type of polymorphism is called 

universal polymorphism.   This is considered to be 
“true” polymorphism, and refers to an object 
being able to become many different data types 
(Jain, 2008).  This is an umbrella for two 
subtypes, inclusive and parametric 
polymorphism.  Inclusive polymorphism is 

polymorphism where a subclass can be used in 

place of a superclass (see Dynamic Binding).  In 
parametric polymorphism a method or object can 
be written in a generic manner through 
parameters which are given a class value when 
the object is instantiated.  In this way 
parameterized types are not “written in stone,” 

which implies they are not dependent on any one 
class.  An object or function can be used in 
different contexts without any conversion or run-
time testing needed in this type. 
 
These types of polymorphism should be taken 
into account for testing.  Indeed, understanding 

all the interactions that can result from the 

polymorphic nature of some objects can be very 
difficult (but necessary) to keep in mind when 
developing test cases (Jain, 2008).  Ad hoc 
polymorphism is less testing intense because the 
tests can be derived statically. Universal 
polymorphism, as the name might imply, is more 

difficult to test because the forms an entity can 
take may be wide-ranging. 

 
Cohesion 
Cohesion is a measure of the degree to which the 

methods of a class create a single, well-defined 

class (Khatri, et al., 2011).  In procedural 
programming, cohesion refers how well a module 
of code (typically a file) belongs together as a 
single unit.  Most of the rest of this discussion 

talks about how a class is cohesive in terms of 
instance variables.  Procedural programs do not 
have instance variables, but instead information 
is passed between methods as parameters.  
Therefore, cohesion in the procedural realm is 
concerned with methods dealing with similar 
parameters and functionality.  In OO, if a class is 

cohesive (its methods contribute to the class as a 
single unit) then the class is reusable, more 
reliable, and more easily understood.  Cohesion 
is related to coupling; if there is high cohesion, 

there is low coupling and vice-versa (Khatri, et 
al., 2011).  High cohesion means that the 

methods within a class are similar in the variables 
used and the tasks they perform. This means test 
data are easier to create and more easily 
understood.  Low cohesion means that there are 
many different types of data that need to be 
defined for a specific class (Yeresime, et al., 
2013).  This complexity in design leads to higher 

costs of testing, and renders testing itself more 
error-prone.   
Another defined metric for this testing factor is 
the Lack of Cohesion in Methods (LCOM).  LCOM 
is defined as the mathematical difference 
between the number of methods whose instance 

variables are completely dissimilar, and the 

number of methods whose instance variables are 
shared (Yeresime, et al., 2012).  See Figure 9. 
 

Consider the three sets of instance variables 
for a class with three methods: 

1: {a, b, c, d, e}l  2:{a, b, e}, and 3: {x, y. 
z} 

Figure 9 Method Cohesion 
 

Methods 1 and 2 have shared instance variables, 
and, therefore, have cohesion.  However, 1 and 3 

and 2 and 3 have no shared instance variables, 
and therefore no cohesion.  In this case, the 
LCOM would be one (2 non-cohesive method pairs 

– 1 cohesive method pair).  If LCOM is high, it 
means that a class is not cohesive (and might be 
a candidate for refactoring into two classes. At the 

testing stage, a class will need to have different 
testing sets for the different methods rather than 
one testing set for the entire class.  This leads to 
confusion and overall complexity of the testing 
process. 
  
LCOM is found in the same suite as DIT and NOC 

(the Chidamber and Kemerer metric suite) 
(Yeresime, et al., 2012).  The authors Badri and 
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Fadel (Badri & Toure, 2012) found that LCOM and 
lines of code (LOC) were the most predictive 
testing metrics over DIT, NOC, (both previously 
discussed) and CBO which is described below. 

 
Coupling 
Coupling is a measure of the dependency 
between modules.  Strong coupling is undesirable 
for many reasons, chiefly of which is that it 
prevents the change of components 
independently of the whole.  (Also, many feel 

strong coupling cohesion is the antithesis of 
highly-valued high cohesion, which arguably 
results in low coupling) – Strong coupling means 
that all (or many) of the methods coupled 

together need to be understood as a set, instead 
of each class operating as its own unit (Khatri, et 

al., 2011).  Strong coupling negatively 
contributes to testing, because it implies that unit 
testing cannot be done effectively. In good 
design, coupling is kept to a minimum especially 
for a large or complex system where coupling 
could result in cluster and system testing 
absorbing the majority of testing resources 

(Badauria, et al., 2011).   
 
An additional Chidamber and Kemerer metric is 
Coupling Between Objects (CBO) (Yeresime, et 
al., 2012).  CBO is a count of the number of 
classes to which a class is coupled (Badri & Toure, 

2013), and represents still another measure of 

complexity.  High CBO leads to less reliability, and 
the higher interoperability between classes 
causes unit testing to be difficult (Yeresime, et al., 
2012).  However, some interoperability is 
generally required for object-oriented 
programming as objects need to be able to 

communicate in some way.  This implies the 
necessity of cluster testing.   
 
Other metrics for software complexity are 
efferent coupling (Ce) and afferent coupling (Ca).  
These come from the R. C. Martins metric suite 
(Yeresime, et al., 2012).  Efferent coupling occurs 

between packages and is the measure of all the 

classes external to a package that are used within 
the package (See Figure 10).  In contrast, 
afferent coupling between packages counts all the 
classes external to a package that are dependent 
on the classes within a package.  (See Figure 11)  
In conjunction, these two help measure the 

stability of a package as a whole (Yeresime, et al., 

2012), where stability is measured     
(Scale 0 to 1 with 0 absolute stability; 1 
absolutely unstable.) Stability, in a sense then, is 
a measure of how well a package can adapt to 

change.  In a testing sense, stability can imply 
how changes in one particular package might 
impact other classes.  If this impact is high due to 
high instability, then  

 
much regression testing must be done in other 
packages as part of cluster or system testing. 
 

         
Figure 10 Efferent coupling (Ce) 

 

 
Figure 11 Afferent coupling (Ca) 

 
Dynamic Binding 
Dynamic binding is a result of either inclusive 
polymorphism or type parameterization 
polymorphism in some languages.  For example, 
in Java the return type of a function or even the 
types of some fields can be decided at run-time 

rather than compile time:  (Figure 12)  Dynamic 
binding introduces concerns when deciding how 
to design test cases, because the exact data type 
of attributes cannot be known statically (Khatri, 
et al., 2011) . 

 

public class Foo <E> { 
    E field; 
    public E getField(){ 
        return field; 
    } 
    public void setField (E field){ 

        this.field = field; 
    } 
}     

Figure 12 Dynamic Binding is Determined at 
Runtime 
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The class in Figure 12 may be instantiated in 
many ways and with many data types through 
parameterization. Thus when designing test cases 

in parameter polymorphism, it may only be 
necessary to test based on how other classes in 
the program will instantiate Foo.  Those data 
types that are used for parameterization in other 
classes must be considered for testing cases, but 
others need not be.  This would be a part of 
cluster or system testing.  Unit testing or class 

testing would be difficult to accomplish because it 
would not be known (without looking at the 
system as a whole) how Foo might be 
instantiated.  The behaviors and properties of E 

might be incredibly varied.  Class and unit testing 
should therefore probably not be done in this case 

of dynamic binding, due to its complexity as a 

unit.  With the whole system, it can most likely be 
determined which data types E might take. 
 
Inclusive polymorphism, in contrast, may be a 
simpler form of dynamic binding to test (Jain, 

2008).  This is because it is often known what 
classes inherit a superclass.  In this way, it can 
be known what types an object may be bound to 
at run-time.  All of these dynamic bindings must 
be included in a test case.  
 
Abstraction 

An abstract class is a type of class that cannot be 
instantiated.  An interface is used as a template 
for other classes.  If the class is just abstract and 
not an interface, it provides useful methods as 
well as variable fields (Khatri, et al., 2011).  
However, these defined methods cannot be 

tested directly and analysis is done from their 
subclasses, because one may not instantiate an 
abstract class or an interface in most languages 
(Badauria, et al., 2011).  … This can lead to major 
overhead.  If an abstract class is inherited by 
more than one class, how many of those child 
classes should be tested?  Even if the child classes 

have not overridden the inherited methods, all 
would need to be tested because the abstract 

class itself cannot be tested, directly.   
 
An R.C. Martins metric described by Yeresime et 
al is abstractness (Yeresime, et al., 2012).  
Abstractness is a ratio of the number of abstract 

classes/interfaces to the total number of classes 
in a package.  This measure is used with the 
instability measure (see Coupling) to create a line 
graph (Yeresime, et al., 2012).  (See Figure 13)    
These points along the “main sequence” line are 
considered to be balanced between abstraction 

and stability.  These are well designed and more 

easily tested.  This means that more abstract and 
unstable, the more difficult to test. 
 

 
Figure 13 A-I Graph (Yeresime, et al., 2012) 

 
8. CONCLUSION 

 
Object-oriented testing is based not only on both 
the input and output of an object’s methods, but 

also how that input and output may influence the 
object’s state.  .  While the many beneficial 
features of the object-oriented paradigm are 
important, the increases in program complexity 
(sometimes in unintended and unseen ways) 
often negatively impacts testing in terms of effort 

and time.  Some of these features, like cohesion 
help lower the amount of testing required, but 
others cause testing efforts to rise. 
 

Traditional testing involves the viewing of input 
and output of a program in a procedural manner.  
Test cases tend to be one dimensional.  In object-

oriented testing, however, test cases are two 
dimensional, because changes in an object’s state 
must be considered.  Traditional testing involves 
both unit and system testing, while object-
oriented testing requires class testing (for how 
the methods of a single object work together) and 
cluster testing (for how coupled objects change 

each other’s’ states).  Thus, it is important to note 
that verification testing (the testing done by the 
developers) has been truly changed by the 
object-oriented paradigm, while validation (that 
done by the end-user) has not. 
 

Moving forward, it will continue to be important 
to define more and better ways for testing object-
oriented programs.  Some already exist, but they 
are wide-ranging and there has been no major 
consensus as to what the best way to test is or 
what factors are most important in testing.  Most 
focus on the fact that order to test object-oriented 

modules is not as definite as in traditional 
programs, where the order of tests follows a 
procedural path.  In object oriented testing, an 
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object may send a message to another object at 
any time.  
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