

©2013 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 6, Issue 1
February 2013

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4 Comparing Performance of Web Service Interaction Styles: SOAP vs. REST

Pavan Kumar Potti, University of North Florida

Sanjay Ahuja, University of North Florida

Karthikeyan Umapathy, University of North Florida

Zornitza Prodanoff, University of North Florida

27 Global Diffusion of Virtual Social Networks: A Pyramid Model of Cultural,

Developmental and Regulatory Foundations

Ying Wang, University of Texas Pan American

Jun Sun, University of Texas Pan American

39 Do Experiments using Immersive and Interactive 3D Structures Improve

Memorization?

Evelyne Lombardo, Euromed Management, Toulon, France

Christine Angelini, Euromed Management, Toulon, France

49 Analysis of Electronic Health Report Implementation and Usage in Texas

Acute Care Hospitals

Stacy Mitchell, University of North Carolina Wilmington

Ulku Yaylacicegi, University of North Carolina Wilmington

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing
frequency is currently quarterly. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the JISAR journal.
Currently the target acceptance rate for the journal is about 45%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2013 AITP Education Special Interest Group (EDSIG) Board of Directors

Wendy Ceccucci

Quinnipiac University

President - 2013

Leslie J. Waguespack Jr

Bentley University

Vice President

Alan Peslak

Penn State University

President 2011-2012

Jeffry Babb

West Texas A&M
Membership Director

Michael Smith

Georgia Institute of Technology
Secretary

George Nezlek

Treasurer

Eric Breimer
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Scott Hunsinger
Appalachian State University

Director

Muhammed Miah

Southern Univ New Orleans
Director

Peter Y. Wu
Robert Morris University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams, CISSP
Retired, State of Illinois

FITE President - 2013

Copyright © 2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor,
editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Samuel Abraham
Siena Heights University

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Ken Corley
Appalachian State University

Gerald DeHondt II

Mark Jones
Lock Haven University

Melinda Korzaan
Middle Tennessee State University

James Lawler
Pace University

Terri Lenox
Westminster College

Michelle Louch
Robert Morris University

Cynthia Martincic
St. Vincent College

Fortune Mhlanga
Lipscomb University

Muhammed Miah
Southern University at New Orleans

George Nezlek

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Samuel Sambasivam
Azusa Pacific University

Bruce Saulnier
Quinnipiac University

Mark Segall
Metropolitan State University of Denver

Anthony Serapiglia
St. Vincent College

Li-Jen Shannon
Sam Houston State University

Michael Smith
Georgia Institute of Technology

Karthikeyan Umapathy
University of North Florida

Stuart Varden
Pace University

Leslie Waguespack
Bentley University

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Peter Y. Wu
Robert Morris University

Ulku Yaylacicegi
University of North Carolina Wilmington

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org - www.jisar.org

Comparing Performance of Web Service

Interaction Styles: SOAP vs. REST

Pavan Kumar Potti
pavan.aryan@gmail.com

Sanjay Ahuja
sahuja@unf.edu

Karthikeyan Umapathy

k.umapathy@unf.edu

Zornitza Prodanoff
zprodano@unf.edu

University of North Florida

1 UNF Drive
Jacksonville, FL 32224, USA

Abstract

This paper presents a comparative performance evaluation of two Web service implementations: one
is based on SOAP and the other on Representational State Transfer (REST). Simple Object Access
Protocol (SOAP) and REST-based development approaches handle service interactions quite

differently. SOAP is a standardized framework for constructing and processing messages independent
of the technological capabilities of the receiver and can work on top of a variety of application layer
protocols such as RPC, HTTP, or SMTP, whereas, REST is a set of principles for designing Web
applications (HTTP as the underlying protocol). We built SOAP and REST-based Web services that
perform Create, Read, Update, and Delete (CRUD) operations on a database and retrieve local files.
We utilized response time and throughput metrics to compare the performance of these Web services.
We found that, on average, REST has better performance compared to SOAP, though not all results

were statistically conclusive. As an ancillary outcome, we found that developing Web services using
SOAP was easier, due to considerable tool support. However, developing Web services using REST was
time consuming and difficult due to the necessity of in-depth knowledge of HTTP and rudimentary tool

support.

Keywords: Web Service, SOAP, REST, Interaction Style, RESTful, Performance

1. INTRODUCTION

In this paper, we investigate two Web service
interaction paradigms: SOAP and
Representational State Transfer (REST), in order

to assess effectiveness of their data transfer
capabilities. These varied approaches to develop
Web service solutions have attracted a lot of
debate both in academic and practitioner
communities. Choosing service interaction style

mailto:pavan.aryan@gmail.com
mailto:sahuja@unf.edu
mailto:k.umapathy@unf.edu
mailto:zprodano@unf.edu

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org - www.jisar.org

is a major architectural decision for designers
and developers, as it influences the underlying
requirements for implementing Web service
solutions (Pautasso, Zimmermann, & Leymann,

2008). While the major software infrastructure
providers such as Microsoft and IBM provide tool
support for developing SOAP-based Web
services, there have been an increasing number
of advocates for the RESTful approach in the
development of Web service solutions, where
REST is used in conjunction with Universal

Resource Identifier (URI) and HTTP (Note that
SOAP has its own application layer protocol
provisions and does not necessarily operate on
top of HTTP, hence the label “SOAP-based Web

services”).

The SOAP-based Web service standard stack
includes various standards such as WSDL, WS-
BPEL, WS-Choreography, WS-Transaction, WS-
Security, WS-Addressing, and many more
developed by standardization organizations such
as W3C and OASIS. Thus, SOAP-based Web
service development essentially involves

understanding relevant standards specification
and using the right set of toolkits to develop
solutions. This constantly increasing parade of
standards and associated technologies often
creates challenges for developers in terms of
conceptual understanding and navigation of the
standards space.

On the other hand, the RESTful approach
espouses that Web service solutions can be
developed by simply representing and exposing
system's resources, and by transferring data
over HTTP. A service is considered as a resource

that can be identified and located by a URI and
different operations can be performed on the
resources using HTTP methods. In contrast,
SOAP-based development focuses on exchange
of communication and actions that occur
between services. Thus, SOAP suggests a
communication-oriented model (Umapathy &

Purao, 2007) whereas REST suggests a
resource-oriented model for designing
interactions among Web services. See appendix

A for overview of SOAP and REST, and a review
of related work.

Although SOAP and REST are both present ways

for building Web services, they differ in the
manner data are processed and services offered.
SOAP is XML-based message exchanging
protocol for distributed computing, whereas
REST is a design principle for Web-based
applications that closely adheres to client-server

architecture and advocates using bare minimum
HTTP methods. Therefore, comparing these two
technologies is not a trivial task. We developed a
SOAP-based Web service and a RESTful Web

service. Both services perform series of data
exchange operations on a database server. In
this article, we compare SOAP and REST
interaction styles based on data transfer
performance of two alternative Web service
implementations using metrics such as response
time and throughput. This article provides a

neutral assessment of the performance and
services offered to developers and architects by
SOAP and REST methodologies for developing
Web services.

The remainder of the paper proceeds as follows:

first we provide a discussion of experimental
methods and set up. Next, we discuss results of
the experiments and statistical analysis followed
by a discussion of results implications.

2. Experimental Setup and Method

Web services are most commonly used for
exposing functionalities and data to other
applications. Thus, service interactions comprise
of information flows into and out of a service.
Complex service interactions would involve an
exchange of dynamic content generated by
retrieving and updating data from databases.

Frequent service calls, therefore, can increase
service processing time and create throughput
bottlenecks. Perceived performance issues with
service interactions would be response times
and throughputs (Cherkasova, Fu, Tang, &
Vahdat, 2003). We compare SOAP and REST

using response time and throughput as
performance metrics.

In order to facilitate comparison of performance
of SOAP and REST interaction styles, we
developed two Web services that perform–
create, read, update, and delete operations on a

database. However, one service, called
CustomerInfoSOAP, uses SOAP technology,
whereas another service, called

CustomerInfoREST, takes advantage of REST
principles. From here on, CustomerInfo service
will be used to refer to both SOAP- and REST-
based services. We created a ‘Customer’ table in

the database (Oracle 10g) containing following
attributes: First name, Last name, SSN,
CustomerID (primary key), Salary, Email, Active
status, Mobile, City, and Country.

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org - www.jisar.org

A Customer program was developed (using
Java) to manage the above specified customer
details. This Customer program was used as the
basis to develop various functionalities offered

by the CustomerInfo service. The CustomerInfo
service offers five functionalities: getCustomer
(obtains a particular customer record from the
database based on given CustomerID),
addCustomer (creates a new customer record
using given customer information),
updateCustomer (updates an existing customer

record using given information), deleteCustomer
(deletes an existing customer record based on
given CustomerID), and getTheFile (retrieves
and returns a specified file stored locally in the

server). The first four functions are used for
measuring response time and the fifth function

is used for measuring throughput.

Client applications were developed (using Java)
to invoke and interface with the appropriate
service functionalities offered by CustomerInfo
service. The interaction between the client
application and CustomerInfo service was used

as the basis for comparing performance of SOAP
and REST. The client application interacted with
the CustomerInfo service using both wired and
wireless connections. For this experiment, two
wired client machines and two wireless client
machines were used. Wired clients were
connected to the service via a 10/100 Full

duplex Ethernet modem. Wireless clients were
connected to the service through an access point
using 802.11g protocol. The server that hosts
service, database server, and all clients were
located in the same room. Appendix B provides
hardware and software configurations and Figure

C1 in appendix C depicts the experimentation
setup.

Measuring Response Time
The methodology used to measure response
time for each service function was same. The
general scenario for measuring service response

times involves a client application invoking an
appropriate functionality provided by the
CustomerInfo service along with relevant data at

an instance of time A (measured in
milliseconds). The service receives the request,
processes it, connects to the database, performs
the requested operation on the database, and

sends an appropriate response to the client. The
client receives the response completely at some
time B (measured in milliseconds). The response
time was measured as the difference between
times A and B.

The concept of multithreading was used to
simulate multiple clients accessing the service at
a given time. Each service request sent from a
client was a thread, and each thread had a

different identification number (threadID). Each
thread was initialized sequentially. To make sure
each thread performs operations on the intended
customer records, rather than all threads
focusing on the same customer, each thread
requested specific operation on the customer ID
based on the thread ID.

In general, the number of service requests per
client depends on the application that produces
them. Since we are not modeling specific

application requests, to more realistically mimic
client behavior, for this experiment, we

randomly allocated the number of service
requests per client, namely: 1, 2, 3, 4, 10, 12,
13, 14, 15, 16, 18, 19, and 20. That sequence
was produced by an on-line random number
generator evaluated by (Kenny, 2005). The first
experiment was conducted with one service
request for each client, thus, a total of two

service requests. Following that, four service
requests were sent with the next experiment,
i.e., two threads (service requests) on each
client. Subsequent runs were conducted with 6
service requests (3 threads on each client), 8
service requests (4 threads on each client), 20
service requests (10 threads on each client), so

on up to 40 service requests (20 threads on
each client). Table C1 in appendix C provides a
list of experiment runs along with the number of
requests made by each client.

The response time was calculated for each

thread separately. For every run, the arithmetic
mean of the thread response times was
measured and considered as the response time
for that run. For example, for a run of 10 service
requests, the response time for each thread was
measured and the arithmetic mean of 10
response times was calculated and recorded as

the response time for 10 service requests.
Figure C2 in appendix C provides the skeleton of
the code for measuring response time.

As per HTTP specification, GET, PUT, and
DELETE methods have idempotence property
(HTTP, 1999). The idempotent methods produce

same results, whether it is executed once or
multiple times (Wikipedia-Idempotence, 2011).
GET method is idempotent safe, as it is typically
used for retrieving a resource without resulting
in any side-effects (HTTP, 1999). In the context
of HTTP PUT method, modifying a resource state

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org - www.jisar.org

(for e.g., updating a customer name from
“Smith” to “Jones”) is considered idempotent;
because the final resource state will be same no
matter how many times the operation is

performed. Similar, argument can be made for
the HTTP DELETE method. Thus, according to
HTTP specification, multiple HTTP PUT and
DELETE requests are not allowed. This has
implications for CustomerInfoREST service as
updateCustomer and deleteCustomer
functionalities rely on HTTP PUT and DELETE

methods correspondingly. We were able to make
multiple service requests using multithreading
for getCustomer and addCustomer functionalities
for both services, however, were not able to

make multiple requests for updateCustomer and
deleteCustomer functionalities for

CustomerInfoREST service.

Using HTTP PUT and DELETE methods as a part
of a sequential request, however, is considered
to be non-idempotent (HTTP, 1999). We created
a client application that invokes addCustomer,
getCustomer, updateCustomer, and

deleteCustomer service functions in a sequential
order. The client application first invoked
addCustomer service function with relevant
data, upon receiving a response, invoked
getCustomer function, upon receiving a
response, invoked updateCustomer function,
upon receiving a response, finally invoked

deleteCustomer function. Similar to other service
functions, response times for composition of all
four functions were measured for multiple
service requests using multithreading. Figure C3
in appendix C provides the skeleton of the code
for measuring response time for composition of

all four service functions. Therefore, we use
response time measures for getCustomer,
addCustomer, and composition of all four
functionalities as the basis to compare
performance of the service.

Measuring Throughput

Throughput is, typically, defined as the data
processed per second. We measure throughput

as the number of application bytes per second
and the number of clients per second.
Throughput was measured using getTheFile
function, which retrieves a specified file. Ten

different image files ranging in size from 76
KiloBytes (KB) to 5 MegaBytes (MB) were used
for measuring throughput. Files of type .png
were stored in the local directory of the server in
which CustomerInfo services were hosted. The
client invokes getTheFile function and sends a

service request for a file with the filename. The
service processes the request, retrieves the file
from the local drive, and sends the file to the
client. System time stamp was recorded by

using the getTime() Java method before
invoking getTheFile and another timestamp of
the system clock was recorded again after
receiving the requested file. The difference
between the two times was considered as the
response time. Throughput in KB per second was
calculated by dividing the file size in KB by the

response time in seconds. Throughput in clients
per second was calculated by dividing the
number of clients by the response time in
seconds. Figure C4 in appendix C provides the

skeleton of the code used for measuring
throughput.

Since there are multiple requests to the same
files (including both accesses to the database
table and image files), the effects of caching
needed to be considered. We anticipated that
physical memory caching of retrieved from the
server’s hard drive files (including database

Table files) would have the largest effect on
response times. Most of the accesses to cached
files were following the exact same pattern for
both the REST-based and SOAP-based
implementations. The only difference in caching
for the two implementations resulted from the
fact that REST based experiments were

conducted first, that is, the very first accesses to
each file took longer to retrieve by the REST
implementation. That is, we are taking a
pessimistic approach in estimating response
times, where our reported REST based
implementation response times, would have

been even faster if files were located in physical
memory before the experiments were
conducted. We must also note that we did not
implement Web caching, as our Web server was
attached to the same LAN as the clients for all
experiments.

3. Results

Response times for multiple service requests

were gathered for getCustomer, addCustomer,
and all four functions. Throughputs were
gathered for multiple service requests accessing
image files using getTheFile function.

Response times for getCustomer function

The getCustomer function enables a client to
request for information about a customer by
providing customer ID. The service gets the

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org - www.jisar.org

specified customer details from the database
and sends the response to the client.
Multithreading was used to depict multiple
clients requesting the service at the same time.

Figure C5 in appendix C depicts SOAP vs. REST
comparative chart of the response time in
milliseconds against the number of simultaneous
service requests for wired clients. Figure C6 in
appendix C depicts the same for service
requests from wireless clients. From the graphs,
it can be observed that for the getCustomer

function, REST had better response times than
SOAP as the number of simultaneous requests
increased. Graphs also indicate that response
times for wireless clients were better than for

wired clients. Links were underutilized for this
experiment (i.e. are not bottleneck and carry

little amount of traffic as compared to the next
experiment). These results are not surprising
since difference in network speeds between Fast
Ethernet and 802.11g had little effect on
performance. The effect of link speed differences
is overshadowed by the effects of the
performance capabilities client computers. This

happened because the wireless clients were
running on computers that had a newer
configuration (dual and virtual cores) compared
to those where the wired clients executed. From
figure C6, it can be noted that SOAP was
competitive until the number of simultaneous
service requests gets greater than 30.

Response times for addCustomer function

The addCustomer function enables a client to
add new customer data to the database. The
service adds the new customer details to the

database and sends a response to the client to
inform successful completion of the process.
Figure C7 depicts SOAP vs. REST comparative
chart for wired clients and figure C8 depicts for
wireless clients. From the graphs, it can be
observed that for the addCustomer function,
REST had better response times than SOAP as

the number of simultaneous requests increased.
Similar to getCustomer function, SOAP had
better response times for wireless clients than

for wired clients.

Response times for all four functions

The all four functions involved invocation of
addCustomer, getCustomer, updateCustomer,
and deleteCustomer functions in a sequential
order. Thus, the client makes service requests in
a sequential order, and service fulfills each
request and sends a response after completion

of the request. Response time was calculated for
completion of all four functions. Similar to other
functions, multithreading was used to make
multiple simultaneous service requests. Figure

C9 and C10 depicts SOAP vs. REST comparative
chart for response times against the number of
multiple service requests for wired clients and
wireless clients, correspondingly. Similar to
other getCustomer and addCustomer results,
REST had better response times than SOAP as
the number of simultaneous requests increased.

Among the four functions, the getCustomer
function constituted the majority of the response
time, affecting the overall functionality and
response time, accounting for the major

performance difference. Similar to getCustomer
and addCustomer functions, SOAP had better

response times for wireless clients than for wired
clients.

Response times for getTheFile function

The getTheFile function enables a client to
retrieve a file stored locally in the server that

hosts the CustomerInfo service. When the client
makes the request for the file, the service
retrieves and responds with the requested the
file. Figure C11 depicts SOAP vs. REST
comparative chart for response times against
the file sizes in KB for wired clients and figure
C12 depicts the same for wireless clients. From

the graphs, it can be observed that response
times for REST were comparatively better than
SOAP response times, which is in keeping with
the general trend observed with response times
with other functions discussed before. However,
as a departure to observed trend, wireless

clients had higher response times than wired
clients. Previously discussed functions requested
text data, whereas the getTheFile requested
image files (*.png). Thus, as the payload size of
service response increases wireless clients may
incur higher response times than that of wired
clients for same service requests.

Throughput in KiloBytes per Second

Throughput can be defined as the average rate
of successful data transmission over a channel.
Throughput for CustomerInfo service was
measured using the getTheFile function by

requesting image files of sizes ranging from 76
KiloBytes to 5083 KiloBytes. Throughput for
each file was calculated using the following
formula: Throughput (bytes per second) = file
size/response time in seconds. Figure C13 and
C14 depicts SOAP vs. REST comparative chart

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org - www.jisar.org

for throughputs in KB per second against to
varying file sizes for wired and wireless clients,
respectively. From below two figures, it can be
observed that as the file size increased, REST

has a higher throughput than SOAP. Figures also
indicate that throughput for service requests for
wired clients were higher than from wireless
clients as it is expected because of link speed
differences.

Throughput in Clients per Second

The following formula was used for calculating
throughput expressed as clients per second:
Throughput (clients per second) equals number

of clients/response time in seconds. Similar to
throughput in KB per second, getTheFile function

was used for measuring throughput in clients
per second and multiple service requests of files
of varying sizes was made using multithreading.
Figure C15 depicts SOAP vs. REST comparative
chart for throughputs in clients per second
against to varying file sizes for wired and
wireless clients and figure C16 depicts the same

for wireless clients. It can be observed that as
the number of simultaneous service requests
increased, REST has a higher throughput than
SOAP. Similar to throughput in KB per second,
throughput in clients per second was higher for
wired clients than wireless clients.

Statistical Analysis

In order to assess whether there is a statistically
significant difference between SOAP and REST in
terms of their population means, for each
conducted experiment we performed an

independent samples t-test using SPSS software
(SPSS, 2011). Due to space limitation, we have
provided details of the statistical analysis,
descriptive statistics, t-test results, effect size
analysis and power size analysis in appendix E
(see appendix D for tables).

Independent samples t-tests were conducted for
each response time and throughput experiment
groups. At the 5% level of significance, only

addCustomer response time experiment with
wired clients, and throughput in KB per second
experiment with wireless clients were
significantly different (i.e., p < 0.05). Difference

between REST and SOAP groups for other
experiments were not statistically significant at
the 5% level of significance. The comparison of
means reveals that REST had a lower response
times and higher throughput than SOAP for all
experimental groups.

Results of experiments with an insignificant
difference, smaller than typical effect size and
low power (less than 0.5) should be considered
as inconclusive (Onwuegbuzie & Leech, 2004).

Therefore, an insignificant difference cannot be
interpreted as there is no statistical difference
between REST and SOAP. Rather it indicates
changes in experimental design and conditions
may be necessary to reach conclusive results.
Thus, regarding experiments with insignificant
findings, future experiments should consider

using either sample size larger than 13 per
group or different experimental set up to
observe a significant difference between REST
and SOAP groups. We conclude that service

developed using RESTful interaction style
performed better than service developed using

SOAP interaction style for addCustomer function
with wired clients and throughput in KB per
second with wireless clients.

4. Discussion

The results of the experiments indicate that

REST has better response times and throughput
than SOAP. However, the difference between
REST and SOAP were statistically and practically
significant only for addCustomer (wired) and
throughtput in KB per second (wireless)
experiments. Response times can be affected by
server processing capabilities and network

bandwidth (Cherkasova, et al., 2003).
Throughput can be affected by a number of
parameters, including network capability,
transmission channel, network congestion
(number of shared applications), distance
between computers, payload size, and

processing technique to handle a payload
(Choudhury & Gibson, 2006; Zhu, Davis, Chan,
& Perreau, 2011). In our experimental setup,
both services were tested using the same set of
payload sizes, client and server machine
configurations, number of clients, and number of
service requests. All clients and server machines

were located in the same room. Both services
used HTTP as the underlying protocol for
exchanging messages and files. To ensure that

services have same processing capabilities, both
SOAP-based and REST-based services were
hosted in the same server machine. Services
were tested in varied network environments

(wired and wireless). Thus, experiment set up
ensured that only difference is the technique
used by services to process and respond to
messages, i.e., service interaction techniques.

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org - www.jisar.org

Regarding response time experiments, for all
wired clients, REST consistently had lower
response times than SOAP. In regard to wireless
clients, SOAP and REST were competitive,

however, on average REST had a better
response time. Newer network configuration of
the wireless clients helped SOAP to be
competitive in comparison to REST. Apart from
network bandwidth, response time would be
affected by the processing time at the service-
side. One of the main difference between REST

and SOAP style interactions is that, for SOAP
messages, the actual payload is included inside
the envelope element, whereas, for REST entire
message is the payload. Thus, SOAP service

would have to perform additional processing to
extract the payload information. Similarly, when

sending a response message, SOAP service
would have to perform additional processing to
construct a SOAP formatted message. The SOAP
client machines also would have to perform
additional processing to create and to read the
message. This additional processing time
incurred towards retrieving information from the

message and embedding response into the
message, may explain higher response times for
SOAP service.

Similar to response time experiments, REST on
average performed better than SOAP for
throughput experiments for both wired and

wireless clients. Throughput experiments were
conducted using image files of various sizes.
There are considerable differences among REST
and SOAP on handling messages with image
files. REST considers the image file as a resource
and includes the URL of the resource in the

response message. Client machines can access
the resource via URL and download the file.
SOAP standard has an attachment feature that
allows transmission of attachments along with a
SOAP message. The SOAP attachment feature
allows creation of a compound message
structure consisting of a primary SOAP envelope

part and secondary parts for including
attachments (SOAP-Attachment, 2004). A
compound structured SOAP message must

contain one and only one primary part and zero
or more secondary parts. Thus, every SOAP
message with an attachment would contain a
primary part regardless of whether an XML

encoded message is included along with the
attachment. Therefore, in comparison to REST
service, SOAP service would have to perform
additional processing to encode the image file as
an attachment into a SOAP message. The SOAP
client machines would have to perform

additional processing to decode the message
and access the image file. This additional
processing time for encoding/decoding
attachments from a message along with larger

payload size due to compound structure could
possibly explain lower throughput for SOAP
service.

The sophistication of SOAP standard is
contributing towards higher processing time and
larger payload, which subsequently affects

response time and throughput of the service.
The simplicity and light-weight approach can be
attributed to RESTful services better
performance than SOAP-based services.

However, there is another important side to this
comparison, which should not be ignored before

selecting a particular interaction style for
designing services. As SOAP is a well-accepted
industry standard, there are numerous
specialized tool support provided by software
vendors. Software vendors provide “out of the
box” products to allow anyone with basic
understanding of web services to develop SOAP-

based services. These tools help developers with
developing services easier and faster, thereby
increasing productivity. Tool support available
for RESTful approach is rudimentary and not as
matured as the SOAP-based approach.
Developers need to have basic understanding of
HTTP, REST principles, and web services to

develop RESTful service. The lack of tool support
means developers would have to spend a
considerable amount of time towards developing
RESTful services, thereby reducing productivity.

Taking results of the experiments and practical

implications into consideration, we provide
recommendations for selecting REST and SOAP
based interaction styles. The RESTful approach
would be appropriate when the bandwidth needs
to be limited as it does not utilize any headers
along with the payload. The RESTful approach
espouses stateless service by maintaining

resource state information at server-side and
application state information at the client-side.
The RESTful approach would be recommended

when the service needs to be stateless, i.e.,
each service interaction is independent of other
interactions. The RESTful approach would be a
good choice when service needs to be developed

with minimal vendor-based products, whereas,
developing SOAP-based service without relying
on tool support would be very difficult, due to
complex associations between standards.

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org - www.jisar.org

SOAP-based interaction style would be
appropriate when the service must address
complex non-functional and QoS requirements,
including security, reliability, and routing. There

are many standards developed on top of SOAP
to support those requirements. As RESTful
approach supports only service interaction
(Issarny et al., 2011), thus, developers would
have to hard code these requirements into their
applications (Tyagi, 2006). SOAP-based services
would be recommended when existing services

needs to be aggregated into a composed
service. Standards such as WS-BPEL (WS-BPEL,
2007) allow developers to specify a sequence of
service invocations and exchange of input and

output data between services. SOAP-based
services are a good choice when the service

needs to maintain contextual information and
conversation state with partnering services.
These requirements are supported by standards
such as coordination (WS-Coordination, 2009)
and choreography (WS-CDL, 2005).

One of the limitations of this study is that only

two out of twelve experimental groups were
revealed to be statistically different and rest of
the groups were inconclusive. This limitation can
be attributed to smaller sample size that is
affecting effect size and statistical power.
Another limitation related to inconclusive result
and experiment design is the focus on CRUD

operations. Payload (customer data and image
files) used for CRUD operations may not have
been sufficient to create substantial differences
between REST and SOAP interaction styles.
CRUD scenarios used in this study did not
necessitate usage of other additional standards.

Usage of additional standards can create a
considerable difference in payload size between
SOAP and REST interaction styles. Database and
CRUD scenarios are conceptually closer to
RESTful as it considers these operations as
resources and exposes them as a service. SOAP-
based approach could have a conceptual

advantage over enterprise application
integration scenarios which involves complex
business transactions, maintaining conversation

states, and conducting secured and reliable
message exchanges. Thus, as a part of future
work, we intend to compare REST and SOAP
interaction styles in both CRUD and enterprise

application integration scenarios using a larger
sample size.

5. REFERENCES

 Alonso, G., Casati, F., Kuno, H., & Machiraju, V.

(2004). Web Services: Concepts,

Architectures and Applications. Berlin:
Springer-Verlag.

Cherkasova, L., Fu, Y., Tang, W., & Vahdat, A.

(2003). Measuring and characterizing end-
to-end Internet service performance. ACM
Transactions on Internet Technology (TOIT),

3(4), 347-391. doi:
10.1145/945846.945849.

Choudhury, S., & Gibson, J. D. (2006, 7-10 May

2006). Payload Length and Rate Adaptation
for Throughput Optimization in Wireless

LANs. Paper presented at the Vehicular
Technology Conference (VTC), Melbourne,
Australia.

Cohen, J. (1988). Statistical power analysis for

the behavioral sciences (2nd. ed.). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner,

A. (2007). G*Power 3: A flexible statistical
power analysis program for the social,
behavioral, and biomedical sciences
Behavior Research Methods, 39(2), 175-
191.

Fielding, R. T. (2000). Architectural Styles and

the Design of Network-based Software
Architectures. Doctor of Philosophy,
University of California, Irvine. Retrieved
from

http://www.ics.uci.edu/~fielding/pubs/disser
tation/top.htm

HTTP. (1999). Hypertext Transfer Protocol --

HTTP/1.1 Retrieved June 3, 2011, from
http://www.w3.org/Protocols/rfc2616/rfc261
6.html

Issarny, V., Georgantas, N., Hachem, S., Zarras,

A., Vassiliadis, P., Autili, M., . . . Hamida, A.

B. (2011). Service-oriented middleware for
the Future Internet: state of the art and
research directions. Journal of Internet
Services and Applications, 2(1), 23-45. doi:

10.1007/s13174-011-0021-3

Kenny, C. (2005, April 2005). Random Number

Generators: An Evaluation and Comparison
of Random.org and Some Commonly Used
Generators Retrieved September 4, 2011,

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org - www.jisar.org

from
http://www.random.org/analysis/Analysis20
05.pdf

Mulligan, G., & Gracanin, D. (2009, 13-16 Dec.
2009). A comparison of SOAP and REST
implementations of a service based
interaction independence middleware
framework. Paper presented at the Winter
Simulation Conference (WSC), Austin, TX,
USA.

Onwuegbuzie, A. J., & Leech, N. L. (2004). Post

Hoc Power: A Concept Whose Time Has
Come. Understanding Statistics, 3(4), 201-

230. doi: 10.1207/s15328031us0304_1

Pautasso, C., Zimmermann, O., & Leymann, F.
(2008). Restful web services vs. "big"' web
services: making the right architectural
decision. Paper presented at the
International conference on World Wide
Web, Beijing, China.

SOAP-Attachment. (2004, 8 June 2004). SOAP
1.2 Attachment Feature Retrieved July 2,
2011, from http://www.w3.org/TR/soap12-
af/

SOAP-Primer. (2007). SOAP Version 1.2 Part 0:

Primer Retrieved February 2, 2011, from

http://www.w3.org/TR/soap12-part0/

SPSS. (2011). IBM SPSS Statistics. Armonk, NY,

USA: IBM. Retrieved from http://www-
01.ibm.com/software/analytics/spss/product
s/statistics/

Tyagi, S. (2006). RESTful Web Services

Retrieved May 28, 2011, from
http://www.oracle.com/technetwork/articles
/javase/index-137171.html

Umapathy, K., & Purao, S. (2007). A Theoretical

Investigation of the Emerging Standards for
Web Services. Information Systems

Frontiers, 9(1), 119-134.

Wikipedia-Idempotence. (2011, 30 May 2011).

Idempotence Retrieved June 3, 2011, from
http://en.wikipedia.org/wiki/Idempotence

WS-BPEL. (2007, May 9). Web Services Business

Process Execution Language (WS-BPEL)
Retrieved June 10, 2008, from
http://www.oasis-
open.org/committees/download.php/23964/

wsbpel-v2.0-primer.htm

WS-CDL. (2005, 9 November). Web Services
Choreography Description Language (WS-
CDL) Candidate Recommendation. Retrieved
April 30, 2008, from
http://www.w3.org/TR/ws-cdl-10/

WS-Coordination. (2009, 2 February 2009). Web

Services Coordination (WS-Coordination)
Version 1.2 Retrieved July 5, 2011, from
http://docs.oasis-open.org/ws-
tx/wscoor/2006/06

Zhu, G., Davis, L. M., Chan, T., & Perreau, S.

(2011, Jan. 31 2011-Feb. 3 2011). Trade-

offs in energy consumption and throughput
for a simple two-relay network. Paper
presented at the Communications Theory
Workshop (AusCTW), 2011 Australian,
Melbourne, Australian.

zur Muehlen, M., Nickerson, J. V., & Swenson, K.
D. (2005). Developing web services
choreography standards - the case of REST
vs. SOAP. Decision Support Systems, 40(1),
9-29.

Editor’s Note:

This paper was selected for inclusion in the journal as the CONISAR 2012 Best Paper. The
acceptance rate is typically 2% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2012.

http://www.random.org/analysis/Analysis2005.pdf
http://www.random.org/analysis/Analysis2005.pdf
http://www.w3.org/TR/soap12-af/
http://www.w3.org/TR/soap12-af/
http://www.w3.org/TR/soap12-part0/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://en.wikipedia.org/wiki/Idempotence
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.w3.org/TR/ws-cdl-10/
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org - www.jisar.org

Appendix A. Background

Overview of SOAP

SOAP is a communication protocol for exchanging messages among distributed applications regardless
of their implementation specific semantics and programming platform. SOAP specifies XML-based
framework to construct messages that can be transmitted over a variety of transportation protocols
such as HTTP and FTP (SOAP-Primer, 2007). A SOAP message must have an envelope as its root
element (SOAP-Primer, 2007). An envelope element can contain two sub-elements: header and body.
The body is a mandatory element used for encoding information being conveyed. The information can
be encoded either using document-style or RPC-style (Alonso, Casati, Kuno, & Machiraju, 2004). The

header is an optional element used for providing contextual information related to processing the
message. Thus, the body element is used for specifying actual payload and header element is used for
specifying the value-added services such as security and transactional context (Alonso, et al., 2004).
For more information about SOAP, refer to (SOAP-Primer, 2007).

Overview of REST

REST is an architecture style for designing and developing Web-based applications. The concept and
architectural principles of REST were outlined by Roy Fielding in his Ph.D. dissertation. As per REST
design principles, Web-based applications are built on top of stateless client-server architecture,
where in, services offered by the server are considered as resources that can be identified by their
URL (Tyagi, 2006). For example, if a client requests access to a resource (ex.: a Web page) using a
URL, the server transmits the resource to the client along with links for accessing other relevant

resources. If the client navigates to one of those links, then a transfer from one state to another has
occurred, thus, the name REpresentational State Transfer (REST). Following the above argument, Web
services can be considered as resources. Web service clients can access these resources through
particular representations (URLs), and transfer data and other application content that describe the
action to be performed on the resource (Tyagi, 2006). Web services developed following REST
principles are called RESTful services. For more information about REST, refer to (Fielding, 2000).

Related Work

The debate between SOAP-based Web service development and taking a RESTful approach in the
development of Web service solutions has been extensively argued among the practitioner
community. In the academic community, recently few studies have focused on this important design
choice. Pautasso et. al (Pautasso, et al., 2008) provide a conceptual comparison of SOAP- vs. RESTful

web services based on technical differences. Their analysis indicates that in comparison to REST,
SOAP-based development involves fewer design decisions but there are many alternatives to consider
for each decision due to standardization and tool support availability. They also suggest that choosing
a RESTful approach would eliminate series of decisions and alternatives to consider for supporting
advanced functionality such as choreography, and QoS. However, providing such functionality support
using REST would incur significant technical risk and development effort. Zur Muehlen et. al. (zur
Muehlen, Nickerson, & Swenson, 2005) provide a comparison of SOAP and REST from the context of

cross-organizational workflows and conclude that both provide different but technically valid ways to
solve the problem. Mulligan and Gracanin (Mulligan & Gracanin, 2009) compared SOAP and REST-
based implementations to support interactions between a middleware application and its peripheral

devices. Their test results indicate that REST implementations are more efficient in terms of network
bandwidth utilization and latency. However, their investigation was based on the context of supporting
a specific middleware application; thus, their findings cannot be generalized for the context of
designing and developing Web service solutions.

While there has been some discussions comparing SOAP- and REST-based approaches for supporting
interactions among Web services, there is a lack of empirical studies that compare these technologies

based on performance metrics. We intend to address this gap, in this paper.

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org - www.jisar.org

Appendix B. Hardware and Software Configurations

Following is the hardware and software configurations used for both service and client applications:
 Service configurations

o Hardware configurations of the hosting server
 Processor: Intel ® Pentium ® 4 CPU 3.00 GHZ 2.99 GHz
 RAM: 0.99 GB
 Operating System: Microsoft XP Professional Version 2002 Service Pack 3
 Hard Drive: Maxtor 6Y080M0
 Network Adapter: Broadcom NetXtreme 57xx Gigabit Controller

o Software configurations

 Integrated Development Environment (IDE) used for developing services: Netbeans
version 6.7

 Application server used for hosting services: GlassFish 3 Prelude
 Programming platform used for developing services: Java, Java Development Toolkit (JDK)

1.6
 Application programming interface (API) for SOAP: Java API For XML-based Web Services

(JAX-WS) 2.0
 Application programming interface (API) for REST: Java API for XML RESTful Services

(JAX-RS) 1.1
 Database: Oracle 10g

 Client configurations
o Hardware configurations of wired clients

 Same as the hardware configurations for the hosting server

o Hardware configurations of the first wireless client
 Processor: Intel ® Dual Core CPU T2050 @ 1.73 GHz
 RAM: 1.99 GB
 Operating System: Microsoft XP Professional Version 2002 Service Pack 3
 Hard Drive: Hitachi HTS541060G9SA00
 Network Adapter: Dell Wireless 1390 mini-card

o Hardware configurations of the second wireless client

 Processor: Intel ® Core ™ i5 CPU M430 @ 2.27 GHZ 2.27 GHz
 RAM: 4.00 GB
 Operating System: Microsoft XP Professional Version 2002 Service Pack 3
 Hard Drive: ST9320325AS
 Network Adapter: Atheros AR5B93 Wireless Network Adapter

o Software configurations

 IDE used for developing client application: Netbeans version 6.7
 Programming platform used for developing client application: Java, JDK 1.6

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org - www.jisar.org

Appendix C. Figures

Figure C1. Experimental setup for running CustomerInfo service and client applications

Client Implementation Thread class
{

Thread run method
public void run ()

{
someMethod (with correlation ID);

}
someMethod ()
{

System time in milliseconds A of a particular thread X;
Code for Operation;
System time in milliseconds B of a particular thread X;

}
}

Figure C2. Skeleton code for measuring response time

Client Implementation Thread class
{

Thread run method

Public void run ()
{

publishMethod (with correlation ID);
retrieveMethod (with correlation ID);
modifyMethod (with correlation ID);
deleteMethod (with correlation ID);

}
publishMethod ()
{

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org - www.jisar.org

System time in milliseconds A, of a particular thread X; (Timer started for the thread
based on correlation ID)
Code for operation with customer ID;

}

retrieveMethod ()
{

Code for operation with customer ID;
}
modifyMethod ()
{

Code for operation with customer ID;

}
deleteMethod ()
{

Code for operation with customer ID;

System time in milliseconds A, of a particular thread X; (Timer end for the thread
based on correlation ID)

}
}

Figure C3. Skeleton code for measuring response time for composition of all four service functions

Client class
{

System time in milliseconds;-
Code for requesting and getting the file;
System time in milliseconds;

}

Figure C4. Skeleton code for measuring throughput

Figure C5. Response times for getCustomer function service requests from wired clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org - www.jisar.org

Figure C6. Response times for getCustomer function service requests from wireless clients

Figure C7. Response times for addCustomer function service requests from wired clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org - www.jisar.org

Figure C8. Response times for addCustomer function service requests from wireless clients

Figure C9. Response times for all for four functions service requests from wired clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org - www.jisar.org

Figure C10. Response times for all four functions service requests from wireless clients

Figure C11. Response times for getTheFile function service requests from wired clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org - www.jisar.org

Figure C12. Response times for getTheFile function service requests from wireless clients

Figure C13. Throughput in KB per second for service requests from wired clients

Figure C14. Throughput in KB per second for service requests from wireless clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org - www.jisar.org

Figure C15. Throughput in clients per second for service requests from wired clients

Figure C16. Throughput in clients per second for service requests from wireless clients

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org - www.jisar.org

Appendix D. Tables

Table D1. Experimental runs and data collection for response time

Experimental Run Number of Service Requests

Client1 Client2 Total

1 1 1 2

2 2 2 4

3 3 3 6

4 4 4 8

5 10 10 20

6 12 12 24

7 13 13 26

8 14 14 28

9 15 15 30

10 16 16 32

11 18 18 36

12 19 19 38

13 20 20 40

Table D2. Descriptive statistics for response times and throughput in clients per second experimental groups

Experimental Groups N Mean Std. Error
Mean

Std.
Deviatio

n

Skewness Kurtosis

Statist

ic

Std. Error Statistic Std.

Error

Response time –
getCustomer function

Wired clients 26 2616.815 179.810 916.855 -0.139 0.456 -0.575 0.887

Wireless clients 26 1412.249 93.831 478.446 -0.158 0.456 -1.203 0.887

Response time –
addCustomer function

Wired clients 26 1691.391 147.687 753.059 0.284 0.456 -0.834 0.887

Wireless clients 26 1365.740 105.959 540.289 -0.238 0.456 -1.170 0.887

Response time – All

four functions

Wired clients 26 8149.871 899.897 4588.591 0.156 0.456 -1.092 0.887

Wireless clients 26 6356.798 631.045 3217.713 -0.184 0.456 -1.364 0.887

Throughput in clients
per second

Wired clients 26 7.758 0.650 3.313 -0.593 0.456 -0.974 0.887

Wireless clients 26 14.296 1.149 5.857 -0.921 0.456 -0.760 0.887

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org - www.jisar.org

Table D3. Descriptive statistics for response times for getTheFile and throughput in KB per second experimental groups

Experimental Groups N Mean Std. Error

Mean

Std.

Deviatio
n

Skewness Kurtosis

Statisti
c

Std.
Error

Statisti
c

Std.
Error

LOG
Response
time –

getTheFile
function

Wired clients 20 2.856 0.129 0.576 -0.468 0.512 -1.349 0.992

Wireless
clients

20 3.317 0.142 0.637 -0.487 0.512 -1.210 0.992

LOG

Throughput in
KB per
second

Wired clients 20 3.160 0.028 0.123 -0.881 0.512 1.114 0.992

Wireless

clients
20 2.700 0.022 0.098 0.144 0.512 1.501 0.992

Table D4. REST and SOAP group descriptive statistics

Experimental Groups N Mean Std. Error

Mean

Std.

Deviation

Response time –
getCustomer
function

Wired

clients

REST 13 2403.775 231.907 836.152

SOAP 13 2829.856 270.869 976.633

Wireless

clients

REST 13 1356.847 126.946 457.712

SOAP 13 1467.651 141.624 510.634

Response time –
addCustomer
function

Wired
clients

REST 13 1227.748 141.531 510.299

SOAP 13 2155.034 187.143 674.754

Wireless
clients

REST 13 1204.787 139.028 501.274

SOAP 13 1526.693 152.099 548.402

Response time –
All four
functions

Wired
clients

REST 13 6430.974 938.153 3382.558

SOAP 13 9868.767 1414.801 5101.136

Wireless
clients

REST 13 6136.475 878.411 3167.156

SOAP 13 6577.121 937.841 3381.435

LOG Response
time –
getTheFile
function

Wired
clients

REST 10 2.814 0.185 0.584

SOAP 10 2.899 0.189 0.597

Wireless
clients

REST 10 3.273 0.216 0.682

SOAP 10 3.361 0.197 0.622

LOG Throughput
in KB per second

Wired
clients

REST 10 3.203 0.034 0.107

SOAP 10 3.117 0.041 0.129

Wireless REST 10 2.744 0.024 0.075

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org - www.jisar.org

clients SOAP 10 2.656 0.033 0.103

Throughput in
clients per

second

Wired
clients

REST 13 8.389 0.992 3.577

SOAP 13 7.127 0.841 3.033

Wireless
clients

REST 13 14.822 1.704 6.144

SOAP 13 13.770 1.596 5.755

Table D5. Independent samples t-tests results

Experimental Groups: REST vs. SOAP Levene’s Test
for Equality of

Variances

t df Sig. (2-
tailed)

F Sig.

Response times –
getCustomer function

Wired
clients

Equal variances assumed 0.245 p>0.05 -1.195 24.000 p>0.05

Equal variances not assumed -1.195 23.444 p>0.05

Wireless

clients

Equal variances assumed 0.151 p>0.05 -0.583 24.000 p>0.05

Equal variances not assumed -0.583 23.718 p>0.05

Response times –
addCustomer function

Wired
clients

Equal variances assumed 1.529 p>0.05 -3.952 24.000 p<0.01

Equal variances not assumed -3.952 22.343 p<0.05

Wireless
clients

Equal variances assumed 0.178 p>0.05 -1.562 24.000 p>0.05

Equal variances not assumed -1.562 23.809 p>0.05

Response times – All
four functions

Wired

clients

Equal variances assumed 3.172 p>0.05 -2.025 24.000 p<0.05

Equal variances not assumed -2.025 20.843 p<0.05

Wireless
clients

Equal variances assumed 0.113 p>0.05 -0.343 24.000 p>0.05

Equal variances not assumed -0.343 23.898 p>0.05

LOG Response times –
getTheFile function

Wired
clients

Equal variances assumed 0.001 p>0.05 -0.324 18.000 p>0.05

Equal variances not assumed -0.324 17.991 p>0.05

Wireless
clients

Equal variances assumed 0.097 p>0.05 -0.301 18.000 p>0.05

Equal variances not assumed -0.301 17.851 p>0.05

LOG Throughput in KB
per second

Wired
clients

Equal variances assumed 0.094 p>0.05 1.613 18.000 p>0.05

Equal variances not assumed 1.613 17.428 p>0.05

Wireless
clients

Equal variances assumed 1.029 p>0.05 2.184 18.000 p<0.05

Equal variances not assumed 2.184 16.449 p<0.05

Throughput in clients
per second

Wired
clients

Equal variances assumed 0.407 p>0.05 0.970 24.000 p>0.05

Equal variances not assumed 0.970 23.374 p>0.05

Wireless
clients

Equal variances assumed 0.051 p>0.05 0.451 24.000 p>0.05

Equal variances not assumed 0.451 23.898 p>0.05

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org - www.jisar.org

Table D6. Comparison of means test results

Experimental Groups Mean
Difference

Std. Error
Difference

95% Confidence Interval
of the difference

Pooled
Std.

Deviation

Effect
Size
(d)

Post
Hoc

Power Lower Upper

Response time –
getCustomer
function

Wired clients -426.082 356.582 -1162.031 309.868 909.110 0.469 0.209

Wireless clients -110.804 190.192 -503.341 281.732 484.896 0.229 0.087

Response time –
addCustomer
function

Wired clients -927.286 234.635 -1411.549 -443.022 598.205 1.550 0.966

Wireless clients -321.907 206.066 -747.206 103.393 525.367 0.613 0.323

Response time – All
four functions

Wired clients -3437.792 1697.584 -6941.434 65.849 4328.007 0.794 0.494

Wireless clients -440.646 1284.972 -3092.697 2211.406 3276.048 0.135 0.063

LOG Response time
– getTheFile
function

Wired clients -0.086 0.264 -0.640 0.469 0.591 0.144 0.061

Wireless clients -0.088 0.292 -0.701 0.525 0.653 0.135 0.059

LOG Throughput in
KB per second

Wired clients 0.086 0.053 -0.026 0.197 0.119 0.726 0.336

Wireless clients 0.088 0.040 0.003 0.172 0.090 0.977 0.543

Throughput in
clients per second

Wired clients 1.262 1.301 -1.423 3.946 3.316 0.381 0.154

Wireless clients 1.052 2.335 -3.767 5.871 5.953 0.177 0.072

Journal of Information Systems Applied Research (JISAR) 6(1)
 February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org - www.jisar.org

Appendix E. Statistical Analysis

The assumptions of population independence and Gaussian populations were tested. As REST and

SOAP implementations were never executed together, data for each sample was gathered
independently, moreover, REST and SOAP would never be implemented together (populations are also
independent). Thus, the assumption of independence was not violated. The assumption of normal
distribution was tested using observation of normal probability plots, histograms with normal curve,
and the combination of skewness and kurtosis coefficients. Data gathered for response time
(getCustomer, addCustomer, and all four functions) experiments and throughput in clients per second
experiment indicate that dataset follow nearly normal distributions. However, response time for

getTheFile function and throughput in KB per second experiments indicated that dataset did not follow
a normal distribution. Data gathered for these experiments was transformed using LOG transformation
function available within SPSS. Investigation of LOG transformed dataset revealed to follow a normal
distribution. Descriptive statistics for the untransformed experimental groups are provided in the table

D2 and for the transformed experimental groups are provided in the table D3.

Independent samples t-tests were conducted for each response time and throughput experiment
groups. Table D4 provides REST and SOAP group statistics. Table D5 shows the results of the
independent samples t-tests. Levene’s test for assumption that the variances of the two groups are
equal indicates that assumption is not violated (i.e., p > 0.05) for all experimental groups. Therefore,
the equal variances assumed t-test statistics was used for analysis. From table D5, it can be observed,
at the 5% level of significance, only addCustomer response time experiment with wired clients, and
throughput in KB per second experiment with wireless clients were significantly different (i.e., p <

0.05). Difference between REST and SOAP groups for other experiments were not statistically
significant at the 5% level of significance. The comparison of means (see table D6) reveals that REST
had a lower response times and higher throughput than SOAP for all experimental groups.

Following Cohen’s guidelines (Cohen, 1988), effect size (Cohen’s d) was calculated to determine the
magnitude of difference between REST and SOAP groups. Effect size was calculated by dividing the
mean differences for REST and SOAP groups by the pooled standard deviation. The pooled standard

deviation is calculated as the square root of the average of the squared standard deviations of REST
and SOAP groups. Table D6 shows the effect size measure for all experimental groups. A larger than
typical effect size (d > 0.8) was detected for response times for addCustomer function (wired) and
throughput in KB per second (wireless) experiments. A typical effect size (0.5 < d < 0.8) was detected
for response time-addCustomer (wireless), response time-all four functions (wired), and throughput in
KB per second (wired) experiments. A smaller than typical effect size (d < 0.5) was detected for the

rest of the experimental groups. Thus, the mean difference between REST and SOAP for response
times for addCustomer function (wired) and throughput in KB per second (wireless) experiments are
of both statistical and practical significance.

Post hoc statistical power analysis was performed using G*Power software (Faul, Erdfelder, Lang, &
Buchner, 2007) to determine the likelihood of finding statistical difference between REST and SOAP for
the given sample size and observed effect size. Typically, post hoc power between 0.5 and 0.8 are

considered as adequate power and greater than 0.8 as high power (Onwuegbuzie & Leech, 2004).
High power was observed for response time-addCustomer function (wired) experiment, thus, there is
a high probability of observing similar findings in future experiments with a similar structure, effect

size, and standard deviation at the 5% level of significance. Adequate power was observed for
throughput in KB per second (wireless) experiment, thus, there is a moderate chance of observing
similar findings in future experiments with a similar structure, effect size, and standard deviation at
the 5% level of significance.

